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1. Introduction 

One spring a young couple and small child arrive in Provence, France, carrying 

bulging suitcases, ardent enthusiasm, and two abnormally large rabbits. They dream of 

settling down in the countryside and living off of the land. Jean, the husband, is unable to 

contain the excitement in his voice as he unveils his prized possession to his new 

neighbors: a carefully folded sheet of paper covered with ink-blotched calculations. 

Proud to have stumbled upon a get-rich-quick phenomenon known by the name of 

exponential growth, he explains how his two rabbits will become four then eight then 

sixteen and soon hundreds upon hundreds... and he is thought to be a madman. 

So that summer the rabbits become intimate and produce more rabbits which in 

turn produce even more rabbits. By mid-summer Jean and his wife have more rabbits than 

they can control. Rabbits are everywhere. Jean and his wife are ecstatic. They dream 

eagerly of all the profits they will soon make. But one week Jean realizes that some of his 

rabbits are dying. They are dying of dehydration. The faster, stronger rabbits quickly lap 

up the small pools of rainwater in the meadow and leave nothing for the others. Jean 

prays for a rain storm, but the skies in Provence burn with a throbbing sun. Jean and his 

wife have to travel several miles to a well to get more water. The young couple finds 

itself unable to bring back enough water to care for all the rabbits. More die. Jean panics. 

Now the death rate is so high that for each young rabbit that is born a weak, older rabbit 

dies. Jean’s population has stopped growing. A month later, a year later, he still has the 

same number of rabbits. The villagers mock the young couple for having bragged about 

such unrealistic dreams. A disillusioned Jean learns the hard way about limits to growth. 

True, sustained exponential growth cannot exist in the real world. Eventually all 

exponential, amplifying processes will uncover underlying stabilizing processes that act as 

limits to growth. The shift from exponential to asymptotic growth, or from positive to 

negative feedback, is known as sigmoidal, or S-shaped, growth. 
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Figure 1: S-shaped growth 

Figure 1 displays a typical S-shaped growth curve.  Positive feedback, which 

generates exponential growth, is tapered by negative feedback, which produces stabilizing 

growth. S-shaped growth can be observed in a wide variety of phenomena. The spread of 

fads, rumors, or even a religion is characterized by S-shaped growth. Attention span, 

concern, and interest also exhibit S-shaped growth. Market saturation and epidemics are 

classic examples of S-shaped behavior. The cellular growth of a plant and physical and 

intellectual development in small children, along with the body's immune response, are all 

subject to S-shaped growth. This paper will begin by exploring population dynamics, 

taking as an example Jean's population of rabbits. 

Exploring S-Shaped Growth will first study the shifting loop dominance that 

produces S-shaped growth. It will then present a generic structure of stocks and flows 

associated with S-shaped behavior. Finally this paper will examine several different 

examples of systems which generate S-shaped growth, emphasizing how a whole range of 

very distinct phenomena can produce similar behavior. 
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2. The Generic Structure 

2.1 Shifting Loop Dominance 

Shifting loop dominance produces S-shaped growth. A system that will exhibit S-

shaped growth starts out in a positive feedback loop. A large increase in the positive loop 

awakens a dormant negative loop. The negative loop does not just spontaneously appear. 

It is present the entire time, but its strength depends on the strength of a variable in the 

positive loop. When the positive loop begins to amplify all the variables involved in its 

cycle, the negative loop is also amplified until the dominance shifts and the negative loop 

takes over. Figure 2 represents shifting loop dominance. 

-critical variable+ stabilizing factorsamplifying factors 

Figure 2: Shifting loop dominance 

The critical variable in the behavior of Jean’s rabbit population is the number of 

rabbits that roam around his farm. As the population of rabbits increases, so does the 

number of rabbit births. More rabbits, more happy couples, more baby rabbits... Births 

reinforce a positive feedback loop. A negative loop, however, lies dormant. As the 

population increases the total supply of water stays fixed, so the amount of water available 

for each rabbit decreases. When the amount of water per rabbit drops low enough, the 

rabbits will no longer have enough water to sustain themselves, and the weaker rabbits will 

start to die. The negative loop reduces the population growth rate until the amount of 

water per rabbit is just large enough to support the rabbit population. 
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Systems that exhibit S-shaped growth behavior are characterized by constraints, or 

limits to growth. In the case of Jean’s rabbits, the system’s constraint is a fixed supply of 

water. The constraint fixes the maximum number of rabbits that Jean’s farm in Provence 

can support. Likewise, the constraint to the spread of a rumor is the number of people 

who could potentially be reached. That number could be the total student body on a 

college campus or a nation of TV viewers, depending on how juicy and pertinent the 

gossip. The constraint for the spread of an epidemic would be the total population 

exposed to the disease. Similarly, a company’s product can saturate a consumer market. 

The constraint of the consumer market would be the size of the product’s particular 

market. Exponential growth cannot last forever. 

2.2 Generic Structure for S-Shaped Growth 

Several different stock and flow structures produce S-shaped growth behavior.1 

Figure 3 represents an intuitive generic structure that explicitly shows both the feedback 

loops and the constraint on the system. See Appendix 5.1 for documented equations for 

the generic structure. 

1 See also Marc Glick and Terri Duhon, 1994. Generic Structures: S-Shaped Growth I (D-4432), System 
Dynamics is Education Project, System Dynamics Group, Sloan School of Management, Massachusetts 
Institute of Technology, August 24, 30p. and William Glass-Husain, 1991. Teaching System Dynamics: 
Looking at Epidemics (D-4243-3), System Dynamics is Education Project, System Dynamics Group, 
Sloan School of Management, Massachusetts Institute of Technology, October 3, 58p. 
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Figure 3: Generic structure that produces S-shaped growth 

The model in Figure 3 is composed of three feedback loops.  The positive 

feedback loop is associated with the Inflow to the STOCK. The Inflow, the product of 

the STOCK and the constant gain_fraction, drives the STOCK into exponential growth. 

Two negative feedback loops regulate the Outflow from the STOCK.  A 

connector ties the current value of the STOCK to the Outflow from the STOCK. The 

Outflow shapes a negative loop. The second negative loop, which passes through the 

loss_fraction, is responsible for shifting loop dominance. 

The STOCK grows initially only if the gain_fraction starts off larger than the 

loss_fraction. When the gain_fraction is greater than the loss_fraction, the Inflow is 

greater than the Outflow, and the system experiences exponential growth. The STOCK, 

however, cannot grow forever. As the STOCK increases, so does the effect_of_stock 

multiplier. The effect_of_stock multiplier determines the effect of the STOCK on the 

loss_fraction. When the effect_of_stock multiplier assumes values larger than 1, the 

loss_fraction increases. The effect_of_stock multiplier will eventually become large 

enough for the loss_fraction to equal the gain_fraction. Then the Outflow will catch up to 

the Inflow and growth will cease. The system will reach equilibrium. 
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Even though the positive feedback loop that originally determines the system’s 

growth is initially stronger than the negative loop, it is at a disadvantage when compared 

to the negative loop. The strength of the positive loop is constant. The negative loop, on 

the other hand, becomes stronger with the growth of the STOCK. The Outflow from the 

STOCK is the product of the STOCK and a variable loss_fraction. Here lies the key to 

the shifting loop dominance: the loss_fraction increases as the STOCK increases. When 

the STOCK is small the negative feedback loop goes almost unnoticed. But as the 

STOCK gets larger, the negative loop becomes stronger and stronger. Finally the 

negative feedback loop drives the system to equilibrium. 

What type of curve is in the effect_of_stock table function?  The curve in the 

effect_of_stock table function is determined by the characteristics of the constraint acting 

upon the specific system in question. In Figure 3 the constraint is modeled as a 

normal_stock converter which determines how much the STOCK can grow. As the value 

of the STOCK becomes large with respect to the normal_stock, the loss_fraction increases 

steadily due to the increased presure of the constraint. So the curve in the effect_of_stock 

table function increases as the ratio of the STOCK to the normal_stock increases. A 

sample curve is included in Figure 4. 

(0.2,1.4) 

(0.6,2.2) 

(1.0,3.0) 
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Figure 4: Sample effect_of_stock curve 

The effect_of_stock curve outputs a fraction steadily increasing from 1. When the 

STOCK is very small, the multiplier is close to 1. The loss_fraction is almost identical to 

the normal_loss_fraction. The positive loop easily dominates. As the STOCK increases, 

however, so does the effect_ of_stock multiplier. When the STOCK is 20% of the 

normal_stock, the ratio of STOCK to normal_stock is 0.2. The effect_of_stock multiplier 

outputs a value of 1.4. So the loss_fraction equals 1.4 times the normal_loss_fraction. 

When the STOCK is 60% of the normal_stock, the effect_of_stock multiplier outputs a 

value of 2.2. So the loss_fraction is 2.2 times the normal_ loss_fraction. As the STOCK 

grows the loss_fraction grows, catching up to the gain_fraction. 

Equilibrium occurs when the loss_fraction reaches the gain_fraction. In the 

generic structure model in Figure 3, the gain_fraction is set to equal 3 times the 

normal_loss_fraction. So the STOCK reaches equilbrium when the loss_fraction is equal 

to 3 times the normal_loss_fraction. When does the effect_of_stock multiplier reach the 

value of 3? The table function outputs a 3 when the ratio of STOCK to normal_stock is 

1. So the system finally reaches equilibrium when the STOCK grows to the size of the 

normal_stock. 

Note that the equilibrium value of the STOCK is determined by the relative values 

of the gain_fraction and normal_loss_fraction and the steepness of the curve in the 

effect_of_stock multiplier. If the curve in the table function is very steep, then a small 

growth in STOCK has a strong effect on the loss_fraction. The loss_fraction grows 

quickly and the Outflow from the STOCK catches up with the Inflow before the STOCK 

has the chance to become very large. The STOCK ceases to grow before it reaches the 

size of the normal_stock. On the other hand, if the ratio of the gain_fraction to the 

normal_loss_fraction is very large, then the loss_fraction has much catching up to do. If 

the gain_fraction was 5 times the normal_loss_fraction, then equilibrium will not be 

reached until the effect_of_stock multiplier outputs a value of 5. The effect_of_stock 
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table function in Figure 4 does not output a value of 5 until the ratio of STOCK to 

normal_stock has a value of 2. In other words, the STOCK would need to be twice as 

large as the normal_stock for the system to reach equilibrium. 

2.2.1 Applying the Generic Structure to the Rabbit Population Model 

Figure 5 is a model of Jean’s rabbit population. Assemble the model using 

STELLA, paying careful attention to the relationship between the variables in the rabbit 

population and the corresponding variables in the generic structure. See Appendix 5.2 for 

documented equations of the rabbit population model. 

RABBITS 

Births Deaths 

birth fraction death fraction 

~ 

effect of crowding 

normal rabbit population 

normal death fraction 

Figure 5: Stock and flow diagram of the rabbit population 

Three distinct feedback loops are at work in the population model.  The left hand 

side of the model contains the positive feedback loop. The right hand side of the model 

displays the two negative loops. The normal_death_fraction is equal to one third of the 

birth_fraction. Because the birth_fraction is larger than the death_fraction, Births will 

initially predominate. As more RABBITS are born there are more and more RABBITS 

ready to give birth to even more RABBITS. 
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The positive loop cannot go unchecked forever because of the constraint on the 

system: the environment can only support a maximum rabbit population. The total supply 

of water available to the rabbits is fixed. The ratio of RABBITS to the 

normal_rabbit_population determines the effect_of_crowding on the death_fraction. 

Figure 6 is a plot of the effect_of_crowding table function. The curve in the table function 

is a representation of the specific constraint of a constant water supply. When there are 

few rabbits, crowding has no effect on the death_fraction. Water is in abundance. The 

table function outputs a value of 1, so the death_fraction is equal to the 

normal_death_fraction. When the rabbit population becomes very large, however, the 

death_fraction starts to increase as the effect_of_crowding table function outputs a value 

larger than 1. As many rabbits as possible are drawing from the constant water supply, 

and the environment’s maximum capacity for rabbits is finally reached. The 

effect_of_crowding table function outputs a value of 3. So the death_fraction equals 3 

times the normal_death_fraction. The death_fraction has caught up to the birth_fraction. 

The number of Deaths reaches the number of Births and the rabbit population system 

stabilizes at equilibrium. 

(1.0,3.0) 

Figure 6: Effect_of_crowding table function 
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2.2.2 Running the Rabbit Population Model 

Set up a graph for the population of RABBITS. Plot the birth_fraction, 

normal_death_fraction, and death_fraction on another graph. Create a converter that 

calculates the Net Flow into the stock of RABBITS. The Net Flow is Births (Inflow) 

minus Deaths (Outflow). Set up a graph for Births, Deaths, and the Net Flow over time. 

Then run the model over a 24-month time period. 

1: RABBITS

1
5 0 0.0 0 

2 5 0.0 0 

0. 00 

asymp to tic 
growth 

1 

po int o f inflection 
tran 

st
sition 
a ge 

expo nen tia l 

1 

gr owth 
1 

0 .00	 6.0 0 1 2 .0 0 18 .0 0 24 .0 0 

Months 

Figure 7: Rabbit population model: stock 

Several interesting insights about the nature of S-shaped growth unfold with the 

examination of the graphs in Figures 7 through 9. First look at the stock, RABBITS, in 

Figure 7. Notice how RABBITS grows exponentially in the first months. The initial 

growth is due to the positive feedback loop. Rabbits make rabbits who make more 

rabbits. Around month 10, however, the curve switches from positive to negative 

concavity. The rabbit population is starting to feel the constraint of an environment in 

which resources are limited. Exponential growth has tapered into asymptotic growth. 

The point on the curve at which the switch occurs is called the “point of inflection.”  It is 

sometimes difficult to tell exactly where the point of inflection lies by simply looking at the 



D-4476-2 16 

graph. Instead of determining the exact value of the point of inflection, it is often practical 

to simply designate the general region between exponential and asymptotic growth, the 

“transition stage.” 

The system’s final state is equilibrium. The rabbit population stabilizes as the 

negative loop generates asymptotic growth. By month 15 the system has almost reached 

equilibrium. 

1: birth fra ctio n 2 : no rmal death fraction 3: dea th fraction 
1. 00 

0. 50 

0. 00 

1 1 1 1 33 

2 3 2 3 2 2 

0 .00 6.0 0 1 2 .0 0 18 .0 0 24 .0 0 

Months 

Figure 8: Rabbit population model: fractions 
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0. 00 

1 2 
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3 
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0 .00	 6.0 0 1 2 .0 0 18 .0 0 24 .0 0 

Months 

Figure 9: Rabbit population model: flows 

Figures 8 and 9 depict the dynamics behind the shift in loop dominance.  Examine 

Figure 8. At first the death_fraction is equal to the normal_death_fraction, so 

birth_fraction is initially three times the death_fraction. Because the birth_fraction is 

larger than the death_fraction, the number of Births surpasses the number of Deaths, as 

seen in Figure 9. Compare the behavior of the Net Flow curve in Figure 9 to the behavior 

of the rabbit population in Figure 7. When the Net Flow has a positive slope the number 

of RABBITS grows exponentially. 

The death_fraction in Figure 8 starts to increase around month 8. The number of 

Deaths increases, but the number of Births increases even faster. Growth is still 

exponential. 

Around month 10 a shift occurs. The Net Flow reaches a maximum.  Its slope is 

no longer positive, but zero. When the Net Flow is at a maximum, the gap between Births 

and Deaths is the largest. Meanwhile, in Figure 7, the growth of the rabbit population 

experiences a point of inflection. Exponential growth tapers into asymptotic growth. The 

system switches from positive to negative feedback. 
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The death_fraction continues to increase in Figure 8 around month 12, 

approaching the gain_fraction. The number of Deaths is catching up to the number of 

Births. The Net Flow has a negative slope, so negative feedback causes the number of 

RABBITS to stabilize towards equilibrium. Although the slope of the Net Flow is 

negative, the Net Flow itself never goes negative. The number of Deaths never rises 

higher than the number of Births. So when the Net Flow has a negative slope the rabbit 

population does not experience decay but stabilizing growth. 

By month 15 the system is close to equilibrium. The rabbit population stabilizes at 

equilibrium when the number of Deaths reaches the number of Births. The death_fraction 

equals the birth_fraction. Births and Deaths cancel each other. The total number of 

RABBITS remains constant. 

There are two possible equilibria in systems that exhibit S-shaped growth.  The 

first occurs before any growth takes place. Visualize the little farm in Provence just 

before Jean arrived with his rabbits. No rabbits are born. None die. Births and Deaths 

are both zero, and the system is at equilibrium. Only two rabbits, however, are needed to 

set the entire system into motion. Twenty months later the system reaches another 

equilibrium. The number of Births and Deaths each month are no longer zero. They are, 

however, equal. So the Net Flow of Births minus Deaths is zero. At the second 

equilibrium, many rabbits are born and just as many die. In all, 500 rabbits roam around 

Jean’s small farm. The first equilibrium is an unstable equilibrium; the second is stable. 

An unstable equilibrium is easily perturbed, easily set into motion, like a penny balanced 

on its edge. A stable equilibrium guarantees that there will be no more motion, in 

population dynamics, no more growth. A penny lying flat on its side is in stable 

equilibrium. 

The behavior obtained from the rabbit population model illustrates the 

characteristics which determine growth. Changes in the net flow into a stock change the 
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growth experienced by the stock. When the net flow has a positive slope, positive 

feedback loops are dominant and the stock experiences exponential growth. When 

negative loops dominate, the slope of the net flow becomes negative, and the stock is 

driven into asymptotic growth. The inflection between exponential and asymptotic growth 

occurs when the slope of the net flow is zero. At the shift, the net flow is at a maximum. 

The stock ceases to grow when the net flow is zero. 

The observations on the dynamics of Net Flow are summarized in Figure 10. 

1: Net Flow 
90.00 

45.00 

0.00 

zero slope 

positive slop
drives exponential

e: 
growth 

1 

1 negat
drives asy

ive slope: 
mptotic growth 

1 

stable 
equilibrium 

1 
0.00 6.00 12.00 18.00 24.00 

Months 

Figure 10: Summary of observations 
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3. Examples 

Many different systems exhibit S-shaped growth.  The generic structure for S-

shaped growth presented in Section 2 helped explore and build intuition about the 

dynamics behind S-shaped growth. The generic structure explicitly shows the feedback 

loops and constraint on growth which cause shifting loop dominance. In most systems, 

however, feedback loops are less apparent and constraints on growth are often hidden or 

implied. The models in the next three examples will not resemble the generic structure at 

a first glance. The same underlying dynamics, however, are at play. The following 

examples will examine the principles of S-shaped growth from different perspectives; 

emphasizing that the same basic dynamics cause a whole range of different phenomena to 

produce identical behavior. 

3.1 Cabbage Patch Kids 

Fads exhibit the characteristics of S-shaped growth. Bell bottoms, charm 

bracelets, hula hoops, mood rings, Rubik’s Cubes, and Cabbage Patch Kids all hit the 

market with a bang. People rushed to stores to buy the latest fad. All of your friends had 

charm bracelets, you needed one too. The number of people who would puzzle over 

Rubik’s Cubes grew exponentially, at first. After a while though, the market for such 

products saturated. You have a Rubik’s Cube on your coffee table, another in your office, 

maybe one in the bathroom. By now you have already resorted to pulling off the colored 

stickers and gluing them back on so that your centerpiece won’t be an embarrassment to 

your intellect. Your Cabbage Patch Kids have taken over your bed. More mood rings? 

Well, you have only ten fingers... 

Modeling the Cabbage Patch Kids mania will help develop a better understanding 

of the dynamics behind S-shaped growth. In 1980 Coleco invented Cabbage Patch Kids, 

fabric dolls designed to look just like their little "parent." In the Babyland General 
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Hospital, employees dressed in hospital gowns sewed the Cabbage Patch Kids by hand. 

The dolls were then given names and delivered with birth certificates and adoption papers. 

The dolls soon became extremely popular. Toy stores were often unable to cope with the 

demand for Cabbage Patch Kids. Orders that had been on backlog for weeks were 

greeted by mobs of parents eager to obtain the cherished dolls for their children. After a 

while though, most children whose parents could afford Cabbage Patch Kids (they often 

cost over $100) already had them. The fad died. As the small parents grew up, Cabbage 

Patch Kids were eventually relegated to shelves and toy chests. 

Please consider the following questions before continuing with the example. 

• What critical variables are involved in the Cabbage Patch Kid system? 

• What constraints are acting on the system? 

• What positive and negative loops determine the system’s behavior? 

Some important variables are the number of children who own a Cabbage Patch 

Kid (CPK), the number of children who have yet to buy a CPK, and how long it takes a 

child to purchase a doll. To simplify the model, assume that each child only buys one doll. 

The constraint, the fixed value, is the market—  the total number of children who 

can afford to buy a doll—  approximated at one million children. 

The system’s behavior is controlled by two major loops. The positive loop 

represents the popularity of the dolls which grows by word of mouth. The more children 

own CPKs, the more popular the CPKs become. The negative loop is caused by the 

constraint of a fixed market. When more children buy CPKs, fewer children remain who 

have yet to buy a CPK of their own, and fewer purchases are made. 
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time to purchase a CPK 

CHILDREN WHO OWN A CPK 

Purchases 

CHILDREN WITHOUT A CPK 

effect of popularity 
on purchases 

fraction of children with CPKs 

Figure 11: Cabbage Patch Kid model 

The positive feedback loop in the Cabbage Patch Kid model is due to the 

increasing popularity of the dolls. The fraction_of_children_with_CPKs increases 

proportionally as the number of CHILDREN_WHO_OWN_A_CPK grows. The 

popularity of the dolls is directly related to the percentage of the population that owns the 

dolls (excluding real-world perception delays for the simplicity of the model.) An increase 

in the number of child-owners increases the effect_of_popularity_on_purchases, which is 

equal to the fraction_of_children_with_CPKs. The popularity multiplier then increases the 

flow of Purchases, which in turn raises the number of CHILDREN_ 

WHO_OWN_A_CPK. 

The model in Figure 11 emphasizes the flow of children from one status to 

another. First they long for a doll, then they own one. As the number of 

CHILDREN_WHO_OWN_A_CPK increases, the number of CHILDREN_WITHOUT_ 

Figure 11 is a possible model of the Cabbage Patch Kids mania.  Documented 

equations of the model can be found in Appendix 5.2. 
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A_CPK decreases. The flow of Purchases is a fraction of the remaining market over time. 

The number of CHILDREN_WHO_ OWN_A_CPK determines the popularity of the 

dolls. The popularity in turn convinces CHILDREN_WITHOUT_A_CPK to make 

purchases. The number of Purchases is calculated by multiplying the effect_of_ 

popularity_on_purchases multiplier by the number of CHILDREN_WITHOUT_A_CPK 

and dividing by the time_to_purchase_ a_CPK. The time_to_purchase_a_CPK is the 

average time for children to convince their parents to buy the expensive dolls plus the 

average time for the parents to find a doll which resembles their child. 

In order to observe the behavior of the Cabbage Patch Kid phenomena, run the 

model in Figure 11 over a 24-month time period. Graph CHILDREN_WHO_ 

OWN_A_CPK on one graph and Purchases on another. Then answer the questions 

below. 

? When does the loop dominance shift? 

? 

__________________________________________________________________ 

What is the approximate value of the stock at the point of inflection? 

? 

__________________________________________________________________ 

When does the Cabbage Patch Kid system reach equilibrium? 

? 

__________________________________________________________________ 

How many children own Cabbage Patch Kids at equilibrium? 

? 

__________________________________________________________________ 

How many purchases are made when the system is at equilibrium? 

__________________________________________________________________ 
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1: CHILDREN WHO OWN A CPK 
1000000.00 

500000.00 

0.00 

1 

1 

1 1 

0.00	 6.00 12.00 18.00 24.00 

Months 

Figure 12: Cabbage Patch Kids: stock over time 

1: Purchases 
125000.00 

62500.00 

0.00 

1 

1 

1 

1 

0.00	 6.00 12.00 18.00 24.00 

Months 

Figure 13: Cabbage Patch Kids: net flow over time 

When does the loop dominance shift? When Purchases has a positive slope the 

system is experiencing positive feedback. On the other hand, when Purchases has a 

negative slope the system is undergoing negative feedback. The transition occurs when 

the slope of Purchases is zero, when Purchases reaches a maximum. Note in Figure 13 
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that Purchases reaches a maximum around month 15. The loop dominance shifts around 

month 15. 

Examine Figure 12 to obtain the value of the stock of CHILDREN_WHO_OWN_ 

A_CPK at the point of inflection. The curve shifts from exponential to asymptotic growth 

around month 15. The shift in growth corresponds to the shift in loop dominance. 

Around month 15, the stock of CHILDREN_WHO_OWN_A_CPK is approximately 

500,000 children. 

The system approaches its stable equilibrium by month 24. The asymptotic growth 

in Figure 12 stabilizes as the total number of CHILDREN_WHO_OWN_A_CPK 

approaches 1 million, exactly the total population of children. At the same time in Figure 

13, at month 24, the number of Purchases goes to zero. When the net flow into a stock is 

zero, the system stabilizes. 

3.2 Protestantism 

In 1517 Martin Luther posted 95 Theses on the door of a church in a small 

German town. The Theses were a list of grievances against the Roman Catholic Church. 

This event marked the beginning of a period in history called the Reformation in which the 

religion of the Protestants spread across Europe. 

Many factors contributed to the rise of Protestantism in the early 16th century. 

The Roman Catholic Church was corrupt. The Popes had been engaged for the last 

hundred years in a series of papal wars. At times, several contenders fought for the 

Papacy. Martin Luther revolted specifically against the practice of indulgences, a process 

by which penitents could buy forgiveness for their sins. 

Protestantism reverted to apostolic poverty and simplicity. Protestants believed in 

the priesthood of all believers. Martin Luther translated the Bible from Latin (which only 

the educated people understood) to everyday German so that the Word of God would be 

accessible to all. Henry VIII, the king of England, severed with the Roman Catholic 
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Church in 1534 over the issue of divorce and created a branch of Protestantism, the 

Anglican Church of England. 

As more and more people converted to Protestantism, however, the Roman 

Catholic Church began to fight back. The Counter Reformation, a period of bloody 

religious civil wars, began. The Inquisition, established in 1542, persecuted the 

Protestants under the pretense of “suppressing the heretics.”  Many intellectuals fled to 

England and Switzerland. In countries such as France, Protestants had to meet in secret, 

fearing for their lives. 

The spread of the Protestant religion exhibited S-shaped growth. Two important 

stocks are the number of Protestants and the number of non-Protestants. 

? What variables drive the positive feedback loop? 

? What variables drive the negative feedback loops? 

The appeal of Protestantism, spread by word of mouth, determines the positive 

loop. The word of mouth loop is strengthened as the number of Protestants increases, 

which in turn engenders more conversions. The corresponding negative loop is due to 

saturation, the constraint of a fixed population. The fewer non-Protestants remaining, the 

fewer conversions. Persecution accounts for the second negative loop. The threat of 

Protestantism causes the Roman Catholic Church to retaliate with the Inquisition. 

Persecution dissuades many people from turning to Protestantism. The more Protestants, 

the larger the perceived threat, the more persecution, the fewer conversions. 
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time to be influenced to convert 

NONPROTESTANTS PROTESTANTS 
Conversions 

fraction of Protestants 

~ 

persecutionstrength of wom 

Figure 14: Protestantism model 

Figure 14 depicts the Protestantism model. The persecution table function can be 

found, along with documented equations of the Protestantism model, in Appendix 5.4. 

Trace through the positive and negative loops in Figure 14. The positive loop is 

determined by the spread of Protestantism by word of mouth. As the number of 

PROTESTANTS increases, the fraction_of_Protestants in the total population 

correspondingly increases. The strength_of_wom (where wom stands for word of mouth) 

is equal to the fraction_of_Protestants in the total population. The strength_of_wom 

multiplier increases the number of Conversions, which in turn raises the number of 

PROTESTANTS. 

The outflow from the stock of NONPROTESTANTS, Conversions, depends on 

the number of NONPROTESTANTS. Here lies a negative saturation loop. When many 

people are susceptible to being converted, many NONPROTESTANTS, the number of 

Conversions is large. When no potential converts remain, however, no amount of 

persuasion will generate new converts. As the number of PROTESTANTS increases, the 

number of NONPROTESTANTS decreases, and the number of Conversions subsequently 

decreases. 
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Persecution also decreases the number of Conversions. The threat of 

Protestantism increases as the number of PROTESTANTS grows. Persecution and 

bloody civil war begins when the PROTESTANTS become numerous enough to pose a 

significant threat to the established regime. In Figure 14, persecution is a multiplier that 

depends on the fraction_of_Protestants in the population. When the fraction is small, 

persecution is very low. As the fraction increases, persecution sharply rises. The number 

of Conversions is negatively affected by the persecution multiplier. The effect of 

persecution on Conversions is (1 – persecution). So when the number of 

PROTESTANTS increases, persecution increases, and the number of Conversions 

decreases. 

Figure 14 is a model with three feedback loops of varying strengths. Which will be 

dominant and when? Computer simulation is the only way to correctly estimate a complex 

model’s behavior. Run the model in Figure 14 over a period of 100 years, from 1500 to 

1600. Graph the number of PROTESTANTS. Graph Conversions over time. Plot the 

persecution converter along with the strength_of_wom converter. Make an additional 

graph which includes both PROTESTANTS and NONPROTESTANTS on the scale. 
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Figure 15: Protestantism: stock over time 

1: Conversions 
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Figure 16: Protestantism: net flow over time 

? When is Protestantism most popular? (When is the Conversions rate largest?) 
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Examine Figure 16. Few people converted at the beginning of the century. 

Lutheran thought was just beginning to take root. As word of mouth causes the intrinsic 

appeal of Protestantism to entice people to convert, the number of Conversions grows. 

By 1535 Conversions reaches its maximum of 20,000 people per year. In Figure 15 the 

number of PROTESTANTS grows exponentially over the first 35 years. The shift from 

exponential to asymptotic growth occurs when almost a sixth of the population has been 

converted. At the inflection point the number of Protestants has become large enough to 

pose a threat to the established Roman Catholic Church. 

? What causes the decrease in the rate of Conversions? 

The Inquisition, officially established in 1542, is part of a growing wave of 

persecution that seriously drops the number of Conversions. Furthermore, with the 

growth of the number of PROTESTANTS, the number of NONPROTESTANTS is 

declining. A decrease in the number of NONPROTESTANTS also reduces the rate of 

conversion. Which negative loop is responsible for the shift in loop dominance seen in 

Figure 15? 

1: strength of wom 2: persecution 
1.00 

0.50 

0.00 
1500.00 1525.00 1550.00 1575.00 1600.00 

Years 

1 

1 

1 1 

2 

2 

2 

2 
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Figure 17: Protestantism: multipliers 

Figure 17 sheds some light on the question of which negative loop is responsible 

for shifting loop dominance. The effect of persecution is much stronger than the 

effect_of_wom. Recall that Conversions is calculated by multiplying the number of 

NONPROTESTANTS by the strength_of_wom and (1 – persecution) and dividing by a 

time constant. In Figure 17, persecution rises sharply around 1535. As persecution 

approaches a value of 1, (1 – persecution) approaches zero. When the number of 

PROTESTANTS becomes large enough for the fraction_of_Protestants to cause such a 

threat that persecution reaches a value of one, the Inquisition is in full swing. Once 

persecution reaches a value of one, (1 – persecution) equals zero and the rate of 

Conversions becomes zero. Because the net flow into the stock of PROTESTANTS has 

become zero, growth stops. 

Look at Figure 18 and notice that the entire European population does not convert 

to Protestantism, contrary to how the entire potential market bought Cabbage Patch Kids. 

Persecution drives the rate of Conversions to zero before Protestantism has reached out to 

the entire population. The number of PROTESTANTS stabilizes towards a constant 

number: 300,000 people, almost one third of the entire population. By 1600, no new 

conversions take place. The system has stabilized at equilibrium. 
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Figure 18: Protestantism: both stocks over time 

In the Protestantism example, more than one negative feedback loop was present. 

Yet the system still generated S-shaped growth. The number of feedback loops is not a 

determining factor in the dynamics of S-shaped growth. What is important then? The 

next example shall address this question. 
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3.3 Immune Response 

By the year 2000 as many as 40 million people worldwide will have become 

infected with HIV, the human immunodeficiency virus, which causes AIDS: Acquired 

Immune Deficiency Syndrome. AIDS is caused by a breakdown of the body’s immune 

defense system. This example will first examine the human immune system. Then the 

model will be slightly modified to describe what happens when HIV impairs the human 

immune system and leaves it vulnerable to a great variety of otherwise harmless infections. 

3.3.1 A Healthy Immune System 

The immune system is powerful because of its specificity (cells attack specific 

invaders) and its memory (cells are ready to launch a rapid attack if the same type of 

invader returns again). When a foreign cell enters the human body, the intruder begins to 

multiply and diffuse through the blood stream. Each foreign cell has its own specific 

antigens. An antigen is a large molecule with a distinct configuration that triggers an 

immune response. Helper T cells, a specific type of white blood cells, roam around the 

human body, looking for foreign antigens. 

Once a helper T cell recognizes a foreign antigen, it activates B cells, another type 

of white blood cells, that begin to proliferate rapidly. Most B cells produce plasma cells 

which secrete antibodies that diffuse into the blood stream. The antibodies bind to the 

antigens, marking them for destruction. Other B cells are reserved as memory cells. 

When a similar antigen invades the body a second time, the memory B cells are ready to 

attack. An immune response which releases antibodies is called an “antibody-mediated” 

immune response. 

If the foreign invader is intracellular (like a virus) rather than extracellular (like 

bacteria) then helper T cells activate a “cell-mediated” immune response.  Once a helper T 

cell recognizes the foreign intruder, it activates killer T cells, yet another type of white 
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blood cells, that begin to proliferate rapidly. Killer T cells directly attack and destroy the 

foreign invaders. Again, memory T cells remain, prepared for any future attacks. 

T cells and B cells are also known as white blood cells.  In general, white blood 

cells respond to a foreign invasion by proliferating and producing antigen-specific 

defenders that destroy the foreign invaders. The number of white blood cells in a human 

body is indicative of how strong a battle the immune defense system is fighting at that 

time. 

Figure 19 shows a simplified model of the immune system. Like all models, it is a 

simplification of one small part of a much larger system. 

WHITE BLOOD CELLS 

FOREIGN CELLS 

Proliferation 

Multiplication Destruction 

strength of proliferation 

time for white blood cells to proliferate 

antigens 

antigens per foreign cell 

strength of the immune response 

time for foreign cells to multiply time to destroy a foreign cell 

Figure 19: Immune response model 
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The proliferation of WHITE_BLOOD_CELLS is activated when helper T cells 

come into contact with antigens. The presence of a very small number of antigens is 

unlikely to set off a massive immune response. However, FOREIGN_CELLS multiply 

rapidly, much faster than rabbits. The strength_of_the_immune_response reflects the 

fraction of antigens that are detected by helper T cells. As the number of antigens grows, 

more antigens are detected, and the WHITE_BLOOD_CELLS proliferate more rapidly. 

Increasing Proliferation is the source of the positive loop that drives the growth of the 

WHITE_BLOOD_CELLS. 

A negative loop comes into play as the WHITE_BLOOD_CELLS perform their 

duty and destroy FOREIGN_CELLS. As the number of WHITE_BLOOD_CELLS 

grows exponentially, antibodies or killer T cells are produced, and the number of 

FOREIGN_CELLS is drastically reduced. The immune response senses the absence of 

FOREIGN_CELLS—  helper T cells come into contact with fewer and fewer antigens—  

and white blood cell Proliferation drops off, leaving the body with a good number of 

WHITE_BLOOD_CELLS ready to fend off a second possible invasion. 

Run the model in Figure 19 over a period of 32 hours. Graph both 

WHITE_BLOOD_CELLS and FOREIGN_CELLS on the same plot. Combine the flows 

Multiplication, Destruction, and Proliferation on one graph. Documented equations for 

the immune response model can be found in Appendix 5.5. 
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Figure 20: Immune response: stocks  over time 

Figure 20 depicts the growth of WHITE_BLOOD_CELLS and FOREIGN_ 

CELLS in an individual with a healthy immune system. Even though FOREIGN_CELLS 

and WHITE_BLOOD_CELLS have the same doubling time, they do not rise at the same 

rate because white blood cell Proliferation, unlike foreign cell Multiplication is also 

dependent on the number of antigens in the system. 

The maximum number of FOREIGN_CELLS is larger than the maximum number 

of WHITE_BLOOD_CELLS because of the delay caused by the 

strength_of_the_immune_response. Helper T cells only come across approximately 1 out 

of every 1000 antigens. The WHITE_BLOOD_CELLS need to catch up on the 

FOREIGN_CELLS’ “head start.”  When the hundred foreign cells per microliter of blood 

attack, only a few antigen-specific WHITE_BLOOD_CELLS (say, ten per microliter) are 

present to ward off the invasion. Notice, though, that the stock of 

WHITE_BLOOD_CELLS does not have an outflow. The white blood cells will 

eventually die, with the exception of the memory cells which will continue to reproduce, 

but, during the 24 hours of warfare, their forces are not depleted. The foreign cells, 

however, are being destroyed. Each white blood cell produces an antigen-specific 
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antibody or killer T cell that destroys a foreign cell each hour. The number of 

FOREIGN_CELLS may reach a higher maximum, but the WHITE_BLOOD_CELLS are 

killing machines. 

Notice that the number of FOREIGN_CELLS reaches a maximum before 

WHITE_BLOOD_CELLS reaches equilibrium. The maximum number of 

FOREIGN_CELLS corresponds to the point of inflection on the WHITE_BLOOD_ 

CELLS curve. At the inflection point the number of WHITE_BLOOD_CELLS has 

become large enough to be effective in destroying FOREIGN_CELLS. As the number of 

FOREIGN_CELLS shoots down, the number of WHITE_BLOOD_CELLS no longer 

needs to grow, and their count stabilizes at an equilibrium value. 

1: Multiplication 2: Proliferation 3: Destruction 
500.00 

250.00 

0.00 

1 

3 

1 32 

1 

2 
3 

2 

1 2 3 
0.00	 8.00 16.00 24.00 32.00 

Hours 

Figure 21: Immune response: net flows versus time 

The curves in Figures 20 and 21 do not seem as smooth as the ones from the 

previous models. Destruction of FOREIGN_CELLS depends only indirectly on the 

number of FOREIGN_CELLS remaining. Destruction has no exponential smoothing; it 

continuously destroys FOREIGN_CELLS until none remain. 



D-4476-2 38 

The immune response system after an invasion of FOREIGN_CELLS is an 

example of stable equilibrium. If similar invaders were to attempt to enter the body after 

the immune response, they would be recognized by antigen-specific memory cells and 

immediately destroyed. Although many of the WHITE_BLOOD_CELLS will eventually 

die off, memory B cells or memory T cells remain in the blood stream. 

The immune response system is in unstable equilibrium before the invasion. 

Proliferation is zero. Once a few FOREIGN_CELLS enter, however, the system is 

triggered and a massive immune response ensues. Eventually the equilibrium becomes 

stable, and any future attacks of that specific type of foreign cell are guaranteed to have 

little effect. 

3.3.2 An Immune System Affected by HIV 

Section 3.3.1 discussed the dynamics of an immune response in a healthy immune 

system. HIV, however, is unlike any normal virus. It attacks the immune system itself. 

The effect of HIV on the human immune system can be modeled by changing the 

strength_of_the_immune_response constant in the model in Figure 19. HIV cripples the 

immune system by sabotaging the genetic material of helper T cells. The helper T cell 

population is depleted. In a healthy body, helper T cells come across and recognize, say, 

one out of every 1000 antigens present per microliter of blood. When the immune system 

is impaired, however, the ratio goes down. With fewer functioning helper T cells on 

patrol, antigens are not detected as easily. The foreign cells have time to multiply before 

the immune response kicks in. 

Cut the strength_of_the_immune_response by a factor of 10 and see what 

happens... 
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Figure 22: Strength_of_the_immune_response = 1 / 10,000 

Figure 22 is a graph of the growth of WHITE_BLOOD_CELLS and FOREIGN_ 

CELLS in an HIV positive individual. A functioning immune system destroys the foreign 

invasion by hour 24. The body withstands 900 FOREIGN_CELLS per microliter of 

blood. When the number of helper T cells is depleted by a factor of 10, however, the 

same 100 FOREIGN_CELLS multiply to become an army of 30,000 FOREIGN_CELLS 

that it takes WHITE_BLOOD_CELLS 36 hours to destroy! 

HIV itself replicates quickly. It spreads through the body until it has impaired the 

immune system to the point where the body succumbs to any small foreign attack. It is 

then that an HIV positive patient is diagnosed as having AIDS. When the 

strength_of_the_immune_response has a value of 1/1500 or 1/2000 the body is still able to 

ward off invasions. However, as the strength_of_the_immune_response gets smaller and 

smaller, the effects are disastrous. The body can only stand the presence of a finite 

number of FOREIGN_CELLS before it succumbs. What would happen if 10,000 

FOREIGN_CELLS were the maximum number of FOREIGN_CELLS that a human body 

could support? The body would collapse by hour 28 before the immune response had the 

time to produce enough specific antibodies or killer T cells to ward off the invasion. 
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Figure 23: Impaired immune response —  detail 

Figure 23 shows in detail what happens.  The number of FOREIGN_CELLS 

grows exponentially. The number of WHITE_BLOOD_CELLS also grows exponentially, 

but at such a slow rate that their presence is almost negligible. When the number of 

FOREIGN_CELLS reaches 10,000 cells per microliter, the system comes to a halt—  the 

human being infected with AIDS has been destroyed by a foreign invasion. The halt 

occurs around hour 28. Fewer than 100 WHITE_BLOOD_CELLS have been produced 

to fight off the invasion. 

A victim of AIDS has virtually no immune response system left.  A small attack of 

FOREIGN_CELLS is allowed to grow unhindered because the body is unable to produce 

enough antibodies or killer T cells in time. How does the behavior of the impaired 

immune response model reflect the dynamics of S-shaped growth? The positive loop that 

causes the WHITE_BLOOD_CELLS to proliferate is so weak that the stock never grows 

large enough to counter the foreign invasion and shift the system into negative feedback. 

The system collapses under the strain of exponential growth before the natural immune 

response can act as a constraint. It is not the number of stocks and flows, nor the number 
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of positive or negative loops that determines the characteristics of S-shaped growth—  it is 

the strength of those loops that matters. 
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4. Conclusion 

Many systems produce S-shaped growth behavior. It is does not matter how many 

positive or negative feedback loops contribute to a certain system. The number of stocks 

is also unimportant. A shift in loop dominance is the determining factor for S-shaped 

growth. When a system shifts from positive to negative feedback, its behavior shifts from 

exponential to asymptotic growth. The strength of these loops determines the 

characteristics of S-shaped growth. 

Exponential growth cannot be sustained forever.  Constraints will always act as 

limits to growth. 

5. Appendix: Model Equations 

5.1 S-Shaped Growth Generic Structure 

STOCK(t) = STOCK(t - dt) + (Inflow - Outflow) * dt

INIT STOCK = 10

DOCUMENT: Units: widgets


INFLOWS:

Inflow = gain_fraction*STOCK

DOCUMENT: Units: widgets/time


OUTFLOWS:

Outflow = loss_fraction*STOCK

DOCUMENT: Units: widgets/time


gain_fraction = a constant 
DOCUMENT: Units: 1/time 
The gain_fraction must be greater than the normal_loss_fraction in order for the 
STOCK to grow initially. 

loss_fraction = normal_loss_fraction*effect_of_stock 
DOCUMENT: Units: 1/time 
The loss_fraction is a normal_loss_fraction times a multiplier which depends on 
the relative size of the STOCK. The loss fraction, as it grows, determines the 
shifting loop dominance. 
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normal_stock = a constant

DOCUMENT: Units: widgets


normal_loss_fraction = a constant

DOCUMENT: Units: 1/time

The normal_loss_fraction must be less than the gain_fraction in order for the

STOCK to grow initially. The normal_loss_fraction represents the initial

loss_fraction. If no constraints were acting upon the system, the loss_fraction

would equal the normal_loss_fraction.


effect_of_stock = GRAPH(STOCK/normal_stock)

(0.00, 1.00), (0.2, 1.40), (0.4, 1.80), (0.6, 2.20), (0.8, 2.60), (1.00, 3.00), (1.20, 

3.40), (1.40, 3.80), (1.60, 4.20), (1.80, 4.60), (2.00, 5.00)

DOCUMENT: Units: dimensionless

The simplest curve that generates S-shaped growth is a straight line that is linearly


increasing. When the STOCK is 0, the multiplier is 1. 

5.2 Rabbit Population Model 

RABBITS(t) = RABBITS(t - dt) + (Births - Deaths) * dt 
INIT RABBITS = 10 
DOCUMENT: Units: rabbits 

INFLOWS:

Births = birth_fraction*RABBITS

DOCUMENT: Units: rabbits/month


OUTFLOWS:

Deaths = death_fraction*RABBITS

DOCUMENT: Units: rabbits/month
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birth_fraction = 0.5

DOCUMENT: Units: 1/month

The birth fraction is the rate at which each rabbit can reproduce.


death_fraction = normal_death_fraction*effect_of_crowding

DOCUMENT:  Units: 1/month

The death fraction is the actual rate at which each rabbit dies.


normal_rabbit_population = 500 
DOCUMENT: Units: rabbits 
The maximum rabbit population is the maximum number of rabbits for which Jean 
can provide water. It is fixed (a constant) because Provence has a dry, arid climate 
and Jean only has a fixed supply of water available to him. (In the story Jean de 
Florette by Marcel Pagnol, however, Jean’s supply of water was not fixed but 
depletable. So as the number of rabbits grew, the water was all used up and all the 
rabbits died. The dynamics of overshoot and collapse will be explored in Road 
Maps 9.) 

normal_death_fraction = (0.5)/3

DOCUMENT: Units: 1/month

The normal_death_fraction is the rate at which each rabbit would die if it had an

unlimited supply of food and water. It is three times less than the birth_fraction.


effect_of_crowding = GRAPH(RABBITS/normal_rabbit_population)

(0.00, 1.00), (0.2, 1.00), (0.4, 1.10), (0.6, 1.30), (0.8, 2.00), (1.00, 3.00), (1.20,

4.20), (1.40, 5.62), (1.60, 7.80), (1.80, 11.1), (2.00, 15.0)

DOCUMENT: Units: dimensionless

Crowding has no effect on the death fraction as long as the number of rabbits on

Jean’s farm does not reach more than half the number that he can support. As the

number of rabbits reaches the maximum rabbit population, the multiplier

exponentially increases from 1 to 3.
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5.3 Cabbage Patch Kids Model 

CHILDREN_WHO_OWN_A_CPK(t) = CHILDREN_WHO_OWN_A_CPK(t - dt) 
+ (Purchases) * dt

INIT CHILDREN_WHO_OWN_A_CPK = 1000

DOCUMENT: Units: children


INFLOWS:

Purchases = effect_of_popularity_on_purchases *

CHILDREN_WITHOUT_A_CPK / time_to_purchase_a_CPK

DOCUMENT: Units: children/month


CHILDREN_WITHOUT_A_CPK(t) = CHILDREN_WITHOUT_A_CPK(t - dt) + (
Purchases) * dt 
INIT CHILDREN_WITHOUT_A_CPK = 1,000,000 
DOCUMENT: UNITS: children 
The total population considered here is the total population that is susceptible to 
buying a doll. (ie. it excludes children who can’t afford the dolls) 

OUTFLOWS:

Purchases = effect_of_popularity_on_purchases *

CHILDREN_WITHOUT_A_CPK / time_to_purchase_a_CPK

DOCUMENT: Units: children/month


effect_of_popularity_on_purchases = fraction_of_children_with_CPKs 
DOCUMENT: Units: dimensionless 
As fraction of children with dolls increases, a corresponding fraction representing 
the effect_of_popularity_on_purchases increases from 0 to 1. 

fraction_of_children_with_CPKs = CHILDREN_WHO_OWN_A_CPK /

(CHILDREN_WHO_OWN_A_CPK + CHILDREN_WITHOUT_A_CPK)

DOCUMENT: Units: dimensionless

The fraction_of_children_with_CPKs is the percentage of the total population

suceptible to buying dolls that actually owns a doll.


time_to_purchase_a_CPK = 2 
DOCUMENT: Units: months 
The time_to_purchase_a_CPK is the average time for children to convince their 
parents to buy a doll plus the average time for the parents to find a doll which 
resembles their child. 

5.4 Protestantism Model 

NONPROTESTANTS(t) = NONPROTESTANTS(t - dt) + (- Conversions) * dt 
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INIT NONPROTESTANTS = 1000000

DOCUMENT: Units: people


OUTFLOWS: 
Conversions = NONPROTESTANTS * strength_of_wom * (1 - persecution) / 
time_to_be_influenced_to_convert 
DOCUMENT: Units: people/year 
Conversions is rate at which NonProtestants, usually Roman Catholics, converted 
to become Protestant. Conversions is the product of the number of people left 
who have yet to convert, the fraction representing the strength of word of mouth, 
the opposite of the fraction representing the strength of persecution, all over the 
time it takes to convert. 

PROTESTANTS(t) = PROTESTANTS(t - dt) + (Conversions) * dt 
INIT PROTESTANTS = 100 
DOCUMENT: Units: people 
The initial value of 100 people represents the original converts (and friends) of 
Martin Luther. 

INFLOWS:

Conversions = NONPROTESTANTS*strength_of_wom * (1 - persecution) /

time_to_be_influenced_to_convert

DOCUMENT: Units: people/year


fraction_of_Protestants = PROTESTANTS / (PROTESTANTS + 
NONPROTESTANTS) 
DOCUMENT: Units: dimensionless 
The fraction_of_Protestants is the percentage of Protestants in the total population 

strength_of_wom = fraction_of_Protestants 
DOCUMENT: Units: dimensionless 
The strength of word of mouth is equal to the number of Protestants spreading 
that word of mouth. 

time_to_be_influenced_to_convert = 4 
DOCUMENT: Units: years 
The time_to_be_influenced_to_convert is the time for a nonProtestant to hear 
about Protestantism and decide to adopt its principles. 

persecution = GRAPH(fraction_of_Protestants) 
(0.00, 0.005), (0.1, 0.235), (0.2, 0.545), (0.3, 1.00), (0.4, 1.00), (0.5, 1.00), (0.6, 
1.00), (0.7, 1.00), (0.8, 1.00), (0.9, 1.00), (1, 1.00) 
DOCUMENT: Units: dimensionless 
Persecution is negligeable when there are relatively few Protestants. As the 
number of Protestants becomes threatening, it shoots up to the point of cutting off 
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future conversions. When the Inquisition and religious civil wars started in 
Europe, there were very few new conversions. 

5.5 Immune Response Model 

FOREIGN_CELLS(t) = FOREIGN_CELLS(t - dt) + (Multiplication-Destruction)*dt 
INIT FOREIGN_CELLS = 100 
DOCUMENT: Units: foreign cells 
100 is an approximate number of foreign cells that invade one microliter of blood. 

INFLOWS:

Multiplication = FOREIGN_CELLS/time_for_foreign_cells_to_multiply

DOCUMENT: Units: foreign cells/hour


OUTFLOWS:

Destruction = IF (FOREIGN_CELLS = 0) THEN 0 ELSE

(WHITE_BLOOD_CELLS / time_to_destroy_a_foreign_cell)

DOCUMENT: Units: foreign cells/hour

Destruction is the average rate at which white blood cells destroy foreign cells.


WHITE_BLOOD_CELLS(t) = WHITE_BLOOD_CELLS(t - dt) + (Proliferation)*dt 
INIT WHITE_BLOOD_CELLS = 10 
DOCUMENT: Units: white blood cells 
Approximately 10 antigen-specific white blood cells are present in one microliter 
of blood before an antigen invasion is recognized. White blood cells is the name 
given to the cells that constitute the human immune response: helper T cells, killer 
T cells, B cells, memory cells... 

INFLOWS:

Proliferation = strength_of_the_immune_response * WHITE_BLOOD_CELLS /

time_for_white_blood_cells_to_proliferate

DOCUMENT: Units: white blood cells/hour
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Proliferation is determined by multiplying a normal proliferation rate (white blood 
cells/time for white blood cells to proliferate) by the variable strength of 
proliferation. 

antigens = FOREIGN_CELLS * antigens_per_foreign_cell

DOCUMENT: Units: antigens

Antigens are macromolecules on foreign cells that, when identified by helper T

cells, trigger an immune response .


antigens_per_foreign_cell = 2

DOCUMENT: Units: antigens/foreign cell

Approximately 2 antigens are attached to each foreign cell.


strength_of_proliferation = strength_of_the_immune_response * antigens 
DOCUMENT: Units: dimensionless 
Strength_of_proliferation is a multiplier that increases the proliferation rate as the 
number of recognized antigens increases. 

strength_of_the_immune_response = 1/1000 
DOCUMENT: Units: dimensionless 
The strength_of_the_immune_response is a fraction representing the ability of 
helper T cells to recognize antigens and activate the proliferation of white blood 
cells. When someone is infected with HIV, the human immune system is crippled 
and the strength_of_the_immune_response is severely weakened. 

time_for_foreign_cells_to_multiply = 5

DOCUMENT: Units: hours


time_for_white_blood_cells_to_proliferate = 5

DOCUMENT: Units: hours


time_to_destroy_a_foreign_cell = 1

DOCUMENT: Units: (white blood cells/foreign cell) * hours
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Vensim Examples: 
Exploring S-Shaped Growth 

Lei Lei & Nathaniel Choge 
October 2001 

S-Shaped Growth Generic Structure 

INITIAL STOCK 

Stock 
inflow outflow 

GAIN FRACTION 

effect of stock loss fraction 

NORMAL LOSS FRACTION 

NORMAL STOCK 

LOOKUP OF EFFECT OF STOCK 

Figure 24: Vensim Equivalent of Figure 3: Generic Structure that produces S-shaped 
Growth 

Documentation for S-Shaped Generic Structure Model 

(01)	 effect of stock = LOOKUP OF EFFECT OF STOCK (Stock/NORMAL STOCK) 
Units: dmnl 

(02)	 FINAL TIME = 100 
Units: time 
The final time for the simulation. 

(03)	 GAIN FRACTION = a constant 
Units: 1/time 
The GAIN FRACTION must be greater than the normal loss fraction in order for 
the Stock to grow initially. 

(04)	 inflow = GAIN FRACTION* Stock 
Units: widgets/time 
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(05)	 INITIAL STOCK = 10 
Units: widgets 

(06)	 INITIAL TIME = 0 
Units: time 
The initial time for the simulation. 

(07)	 LOOKUP OF EFFECT OF STOCK 
([(0,0)-(10,10)],(0,1),(0.2,1.4),(0.4,1.8),(0.6,2.2),(0.8,2.6),(1,3), 
(1.2,3.4),(1.4,3.8), (1.6,4.2),(1.8,4.6),(2,5)) 
Units: dmnl 
The simplest curve that generates S-shaped growth is a straight line that is linearly 
increasing. When the Stock is 0, the multiplier is 1. 

(08)	 loss fraction = NORMAL LOSS FRACTION* effect of stock 
Units: 1/time 
The loss fraction is a NORMAL LOSS FRACTION times a multiplier that 
depends on the relative size for the Stock. The loss fraction, as it grows, 
determines the shifting loop dominance. 

(09)	 NORMAL LOSS FRACTION = a constant 
Units: 1/time 
The NORMAL LOSS FRACTION must be less than the GAIN FRACTION in 
order for the Stock to grow initially. The NORMAL LOSS FRACTION represents 
the initial loss fraction. If no constraints were acting upon the system, the loss 
fraction would equal the NORMAL LOSS FRACTION. 

(10) NORMAL STOCK = a constant

Units: widgets


(11)	 outflow = loss fraction* Stock 
Units: widgets/time 

(12)	 SAVEPER = TIME STEP 
Units: time 
The frequency with which output is stored. 

(13)	 Stock = INTEG (inflow-outflow, INITIAL STOCK) 
Units: widgets 

(14)	 TIME STEP = 1 
Units: time 
The time step for the simulation. 
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Applying the Generic Structure to the Rabbit Population Model 

INITIAL RABBITS 

Rabbits 
births deaths 

BIRTH FRACTION death fraction 

NORMAL 
RABBIT 

POPULATION 

effect of 
crowding 

LOOKUP OF 
EFFECT OF 
CROWDING 

net flow 

NORMAL DEATH 
FRACTION 

Figure 25: Vensim Equivalent of Figure 5: Stock and flow diagram of the rabbit 
      Population 

Documentation for Rabbit Population Model 

(01)	 BIRTH FRACTION = 0.5 
Units: 1/Month 
The BIRTH FRACTION is the rate at which each rabbit can reproduce. 

(02)	 births = BIRTH FRACTION* Rabbits 
Units: rabbits/Month 

(03)	 death fraction = NORMAL DEATH FRACTION* effect of crowding 
Units: 1/Month 
The death fraction is the actual rate at which each rabbit dies. 

(04)	 deaths = death fraction* Rabbits 
Units: rabbits/Month 

(05)	 effect of crowding = LOOKUP OF EFFECT OF CROWDING 
(Rabbits/NORMAL RABBIT POPULATION) 
Units: dmnl 
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This is the equation that shows that the effect of crowding is a function of the 
rabbit population. 

(06)	 FINAL TIME = 24 
Units: Month 
The final time for the simulation. 

(07)	 INITIAL RABBITS = 10 
Units: rabbits 

(08)	 INITIAL TIME  = 0 
Units: Month 
The initial time for the simulation. 

(08)	 LOOKUP OF EFFECT OF CROWDING 
([(0,0)-(2,15)],(0,1),(0.2,1),(0.4,1.1),(0.6,1.3),(0.8,2),(1,3),(1.2,4.2), 
(1.4,5.62),(1.6,7.8),(1.8,11.1),(2,15)) 
Units: dmnl 
Crowding has no effect on the death fraction as long as the number of rabbits on 
Jean's farm does not reach more than half the number that he can support. As the 
number of Rabbits reaches the maximum rabbit population, the multiplier 
exponentially increases from 1 to 3. 

(10)	 net flow = births-deaths 
Units: rabbits/Month 
This is the net flow of rabbits/month. 

(11)	 NORMAL DEATH FRACTION = 0.167 
Units: 1/Month 
The NORMAL DEATH FRACTION is the rate at which each rabbit would die if 
it had an unlimited supply of food and water. It is three time less than the birth 
fraction. 

(12)	 NORMAL RABBIT POPULATION = 500 
Units: rabbits 
The maximum rabbit population is the maximum number of rabbits for which Jean 
can provide water. It is fixed (a constant) because Provence has a dry, arid climate 
and Jean only has a fixed supply of water available to him. (In the story Jean de 
Florette by Marcel Pagnol, however, Jean's supply of water was not fixed but 
depletable. So as the number of rabbits grew, the water was all used up and all the 
rabbits died. The dynamics of overshoot and collapse will be explored in Road 
Maps 9.) 

(13)	 Rabbits = INTEG (births-deaths, INITIAL RABBITS) 
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Units: rabbits 

(14)	 SAVEPER = TIME STEP 
Units: Month 
The frequency with which output is stored. 

(15)	 TIME STEP = 0.0625 
Units: Month 
The time step for the simulation. 

Graph of birth, normal death, and death fraction 
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Time (Month) 

BIRTH FRACTION : Current 1 1 1 1 1 1 1 1/Month 
NORMAL DEATH FRACTION : Current 2 2 2 2 2 1/Month 
death fraction : Current 3 3 3 3 3 3 3 3 1/Month 

Figure 26: Vensim Equivalent of Figure 8: Rabbit population model: fractions 
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Graph of births, deaths, and net flow 
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Figure 27: Vensim Equivalent of Figure 9: Rabbit population model: flows 

Cabbage Patch Kids 

TIME TO PURCHASE A CPK 

Children Without 
a CPK purchases 

effect of popularity on purchases 

fraction of children with CPKs 

Children Who

Own a CPK


INITIAL CHILDREN INITIAL CHILDREN 
WITHOUT A CPK WHO OWN A CPK 

Figure 28: Vensim Equivalent of Figure 11: Cabbage Patch Kid Model 
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Documentation for Cabbage Patch Kids Model 

(01)	 Children Who Own a CPK = INTEG (+purchases, INITIAL CHILDREN WHO 
OWN A CPK) 
Units: children 
Number of children who own a Cabbage Patch Kid. 

(02)	 Children Without a CPK = INTEG (-purchases, INITIAL CHILDREN 
WITHOUT A CPK) 
Units: children 
The total population considered here is the total population that is susceptible to 
buying a doll. (i.e. it excludes children who can't afford the dolls) 

(03)	 effect of popularity on purchases = fraction of children with CPKs 
Units: dmnl 
As fraction of children with dolls increases, a corresponding fraction representing 
the effect or popularity on purchases increases from 0 to 1. 

(04)	 FINAL TIME = 24 
Units: Month 
The final time for the simulation. 

(05)	 fraction of children with CPKs = 
Children Who Own a CPK/(Children Who Own a CPK+Children Without a CPK) 
Units: dmnl 
The fraction of children with CPKs is the percentage of the total population 
susceptible to buying dolls that actually owns a doll. 

(06)	 INITIAL CHILDREN WHO OWN A CPK = 1000 
Units: children 

(07)	 INITIAL CHILDREN WITHOUT A CPK = 1e+006 
Units: children 

(08)	 INITIAL TIME = 0 
Units: Month 
The initial time for the simulation. 

(09)	 purchases = effect of popularity on purchases* Children Without a CPK/TIME TO 
PURCHASE A CPK 
Units: children/Month 

(10)	 SAVEPER = TIME STEP 
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Units: Month

The frequency with which output is stored.


(11)	 TIME STEP = 0.0625 
Units: Month 
The time step for the simulation. 

(12)	 TIME TO PURCHASE A CPK = 2 
Units: Month 
The time to purchase a CPK is the average time for children to convince their 
parents to buy a doll plus the average time for the parents to find a doll that 
resembles their child. 

Graph for Children Who Own a CPK 
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Children Who Own a CPK : Current 1 1 1 1 1 1 children 

Figure 29: Vensim Equivalent of Figure 12: Cabbage Patch Kids: stock over time 
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Graph of purchases 
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Figure 30: Vensim Equivalent of Figure 13: Cabbage Patch Kids: net flow over time 

Protestantism 
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Figure 31: Vensim Equivalent of Figure 14: Protestantism model 
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Documentation for Protestantism Model 

(01)	 conversions = Nonprotestants * strength of wom * 
(1-persecution)/TIME TO BE INFLUENCED TO CONVERT 
Units: people/year 
Conversions is rate at which Nonprotestants, usually Roman Catholics, converted 
to become Protestant. Conversions is the product of the number of people left who 
have yet to convert, the fraction representing the strength of word of mouth, the 
opposite of the fraction representing the strength of persecution, all over the time 
it takes to convert. 

(02)	 FINAL TIME = 1600 
Units: year 
The final time for the simulation. 

(03)	 fraction of Protestants = Protestants/(Nonprotestants+Protestants) 
Units: dmnl 
The fraction of Protestants is the percentage of Protestants in the total population. 

(04)	 INITIAL NONPROTESTANTS = 1e+006 
Units: people 

(05)	 INITIAL PROTESTANTS = 100 
Units: people 

(06)	 INITIAL TIME = 1500 
Units: year 
The initial time for the simulation. 

(06)	 LOOKUP OF EFFECT OF PERSECTION 
([(0,0)-(1,1)],(0,0.005),(0.1,0.235),(0.2,0.545),(0.3,1),(0.4,1),(0.5,1), 
(0.6,1),(0.7,1),(0.8,1),(0.9,1),(1,1)) 
Units: dmnl 
Persecution is negligible when there are relatively few Protestants. As the number 
of Protestants becomes threatening, it shoots up to the point of cutting off future 
conversions. When the Inquisition and religious civil wars started in Europe, there 
were very few new conversions. 

(08)	 Nonprotestants = INTEG (-conversions, INITIAL NONPROTESTANTS) 
Units: people 

(09)	 persecution = LOOKUP OF EFFECT OF PERSECTION (fraction of Protestants) 
Units: dmnl 
This equation shows that persecution is a function of the fraction of Protestants. 

(10)	 Protestants = INTEG (conversions, INITIAL PROTESTANTS) 
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Units: people 
The initial value of 100 people represents the original converts (and friends) of 
Martin Luther. 

(11)	 SAVEPER = TIME STEP 
Units: year 
The frequency with which output is stored. 

(12)	 strength of wom = fraction of Protestants 
Units: dmnl 
The strength of word of mouth is equal to the number of Protestants spreading 
that word of mouth. 

(13)	 TIME STEP = 1 
Units: year 
The time step for the simulation. 

(14)	 TIME TO BE INFLUENCED TO CONVERT = 4 
Units: year 
The time to be influenced to convert is the time for a Nonprotestant to hear about 
Protestantism and decide to adopt its principles. 

Graph of Protestants 
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Figure 32: Vensim Equivalent of Figure 15: Protestantism: stock over time 
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Graph for conversions
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Figure 33: Vensim Equivalent of Figure 16: Protestantism: net flow over time 

Graph of strength of wom and persecution 
2 2 2 2 2 21 dmnl 

1 dmnl 

0.5 dmnl 
0.5 dmnl 

0 dmnl 
0 dmnl 

2 

2 

2 1 1 1 1 1 1 1 1 

21 1 2 21 1 
2 1 

1 

1500 1515 1530	 1545 1560 1575 1590 
Time (year) 

strength of wom : Current 1 1 1 1 1 1 1 1 1 dmnl 
persecution : Current 2 2 2 2 2 2 2 2 2 dmnl 

Figure 34: Vensim Equivalent of Figure 17: Protestantism: multipliers 
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Graph of Protestants and Nonprotestants 
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Figure 35: Vensim Equivalent of Figure 18: Protestants: both stocks over time 
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Immune Response 
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Figure 36: Vensim Equivalent of Figure 19: Immune response model 

NOTE: Differences between the Stella and Vensim versions of the Immune System Model are 
described below the model documentation. 

Documentation for Immune Response Model 

(01)	 antigens = Foreign Cells*ANTIGENS PER FOREIGN CELL 
Units: antigens 
Antigens are macromolecules on foreign cells that, when identified by helper T 
cells, trigger an immune response. 

(02)	 ANTIGENS PER FOREIGN CELL = 2 
Units: antigens/foreign cells 
Approximately 2 antigens are attached to each foreign cell. 

Foreign Cells 
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(03)	 cell destruction multiplier = LOOKUP FOR EFFECT OF RELATIVE DENSITY 
ON DESTRUCTION(relative white blood cell density) 
Units: dmnl 
A dimensionless multiplier produced by the lookup table and the ratio of foreign 
cells to white blood cells. This multiplier shows the effect of relative white blood 
cell density on the number of foreign cells destroyed. 

(04)	 destruction = Foreign Cells/TIME TO DESTROY A FOREIGN CELL*cell 
destruction multiplier*NORMAL DESTRUCTION 
Units: foreign cells/hour 
Destruction is the average rate at which white blood cells destroy foreign cells. 

(05)	 FINAL TIME = 48 
Units: hour 
The final time for the simulation. 

(06)	 Foreign Cells= INTEG (+multiplication-destruction, INITIAL FOREIGN CELLS) 
Units: foreign cells 
100 is an approximate number of foreign cells that invade one microliter of blood. 

(07)	 INITIAL FOREIGN CELLS =100 
Units: foreign cells 

(08)	 INITIAL TIME = 0 
Units: hour 
The initial time for the simulation. 

(09)	 INITIAL WHITE BLOOD CELLS = 10 
Units: white blood cells 

(10)	 LOOKUP FOR EFFECT OF RELATIVE DENSITY ON DESTRUCTION( 
[(0,0)-(2,2)],(0,0),(0.4,0.625),(1,1.125),(1.5,1.25),(2,1.25)) 

Units: dmnl 
This lookups gives the relationship between the ratio of white blood cells to 
foreign cells (relative white blood cell density) and the number of foreign cells 
destroyed. As the ratio gets higher, the number of foreign cells destroyed 
increases. However, when the ratio is above one, the multiplier is at the value that 
produces (cell destruction multiplier*NORMAL DESTRUCTION) = 1, since we 
cannot destroy more foreign cells than are present in the blood. 

(11)	 multiplication = Foreign Cells/TIME FOR FOREIGN CELLS TO MULTIPLY 
Units: foreign cells/hour 

(12)	 NORMAL ANTIGENS = 1 
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Units: antigens 
This is the normal number of antigens in the blood. i.e. without any foreign cells 
invading. 

(13)	 NORMAL DESTRUCTION = 0.8 
Units: dmnl 
This is a multiplier that gives the proportion of Foreign Cells that are found and 
destroyed by White Blood Cells when the "relative white blood cell density" is 
equal to 1. i.e. the proportion of Foreign Cells killed at normal white blod cell 
concentration. 

(14)	 NORMAL RATIO OF WHITE BLOOD CELLS TO FOREIGN CELLS = 1 
Units: white blood cells/foreign cells 
This gives the normal number of white blood cells for each red blood cells in blood 
uninfected by antigens. 

(15)	 proliferation = strength of proliferation*White Blood Cells/TIME FOR WHITE 
BLOOD CELLS TO PROLIFERATE 
Units: white blood cells/hour 
Proliferation is determined by multiplying a normal proliferation rate (white blood 
cells/time for white blood cells to proliferate) by the variable strength of 
proliferation. 

(16)	 ratio of white blood cells to foreign cells = White Blood Cells/Foreign Cells 
Units: white blood cells/foreign cells 
Ratio of White Blood Cells to Foreign Cellls in the blood. 

(17)	 relative white blood cell density = ratio of white blood cells to foreign 
cells/NORMAL RATIO OF WHITE BLOOD CELLS TO FOREIGN CELLS 
Units: dmnl 
This gives a measure of the density of white blood cells with respect to the normal 
proportions of foreign cells and white blood cells. 

(18)	 SAVEPER = TIME STEP 
Units: hour 
The frequency with which output is stored. 

(19)	 STRENGTH OF IMMUNE RESPONSE = 0.0001 
Units: dmnl 
The strength of the immune response is a fraction representing the ability of helper 
T cells to recognize antigens and activate the proliferation of white blood cells. 
When someone is infected with HIV, the human immune system is crippled and the 
strength of the immune response is severely weakened. 
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(20)	 strength of proliferation = STRENGTH OF IMMUNE 
RESPONSE*antigens/NORMAL ANTIGENS 
Units: dmnl 
Strength of proliferation is a multiplier that increases the proliferatin rate as the 
number of recognized antigens increases. 

(21)	 TIME FOR FOREIGN CELLS TO MULTIPLY = 5 
Units: hour 
Time it takes for white blood cells to multiply after detection of the antigens. 

(22)	 TIME FOR WHITE BLOOD CELLS TO PROLIFERATE = 5 
Units: hour 

(23)	 TIME STEP = 0.0625 
Units: hour 
The time step for the simulation. 

(24)	 TIME TO DESTROY A FOREIGN CELL = 1 
Units: hour 
Time it takes to destroy a foreign cell. 

(25)	 White Blood Cells= INTEG (proliferation, INITIAL WHITE BLOOD CELLS) 
Units: white blood cells 
Approximately 10 antigen-specific white blood cells are present in one microliter 
of blood before an antigen invasion is recognized. White blood cells is the name 
given to the cells that constitute the human immune response: helper T cells, killer 
T cells, B cells, memory cells.... 

Differences between the Vensim and Stella Immune System Models: 

1.	 The differences between the Vensim and Stella versions all centre around the Foreign cell 
destruction. In the Stella version the destruction of foreign cells was limited only by the fact 
that the stock of “Foreign Cells” was set to non-negative. There was no first order control on 
the number of foreign cells being killed, since in any timestep it was possible to kill a number 
of foreign cells higher than the actual number of foreign cells present in the blood. This is 
incorrect modeling practise. 

2.	 To fix the problem in the Vensim version, we have introduced new structure to ensure that the 
number of foreign cells destroyed is always less than or equal to the number of foreign cells 
present in the blood. The ratio of White Blood Cells to Foreign Cells gives a relative cell 
density that is the input to a lookup table. The lookup table shows how the relative cell density 
affects Foreign Cells destruction through the LOOKUP FOR EFFECT OF RELATIVE 
DENSITY ON DESTRUCTION. The output multiplier from this lookup table multiplied 
with the NORMAL DESTRUCTION and “Foreign Cells/TIME TO DESTROY A FOREIGN 
CELL” gives a rate of  destruction that depends directly on the ratio of white blood cells to 
foreign cells for relative cell densities less than 1. However, for relative cell densities greater 
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than 1 i.e. more white blood cells than foreign cells in the blood, the table function begins to 
limit the destruction of foreign cells destroyed as they become more scarce, producing a model 
that more acurately represents the real system. 
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Figure 37: Vensim Equivalent of Figure 20: Immune response: stocks over time 

Graph of Multiplication, Proliferation and Destruction 
6,000 foreign cells/hour 

20,000 white blood cells/hour 

3,000 foreign cells/hour 
10,000 white blood cells/hour 

0 foreign cells/hour 
0 white blood cells/hour 

1 

1 

2 3 1 2 3 1 2 3 1 2 3 

1 

2 3 2 

3 
2 

3 1 2 31 1 
0 6 12 18 24 30 36 42 48 

Time (hour) 

multiplication : Initial 1 1 1 1 1 1 1 foreign cells/hour 
proliferation : Initial 2 2 2 2 2 2 2 white blood cells/hour 
destruction : Initial 3 3 3 3 3 3 3 white blood cells/hour 



D-4476-2 67 

Figure 38: Vensim Equivalent of Figure 21: Immune response: net flows versus time 
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Figure 39: Vensim Equivalent of Figure 22: Strength of the immune response = 1/10,000 

Graph with Impaired Immune Response - Detail 
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Figure 40: Vensim Equivalent of Figure 23: Impaired immune response - detail 




