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1. INTRODUCTION 

“Goldfield, Arizona was a busy bustling little town perched atop a small hill 

between the mighty Superstition Mountains to the east and the Goldfield Mountains to 

the west. The first gold-strike was made in 1892, and it took just a little under a year 

before the town came to life. One rich strike after another supported the town and 

approximately 4000 people who lived in the district for five rich years. The town boasted 

3 saloons, a boarding house, general store, blacksmith shop, brewery, meat market and a 

school house. Just when it looked like the town would outgrow Mesa,1 the vein faulted, 

the grade of ore dropped and the town died a slow painful death.”2 

Goldfield, Arizona is today one of the many ghost towns that litter the Western 

United States. The history of this town is an example of the behavior of overshoot and 

collapse. When gold was discovered in the nearby hills, the town sprung up as miners 

flocked in, eager in their rush for gold. The population grew rapidly as new miners 

arrived, and stores, saloons, and schools followed. Meanwhile, however, the miners were 

extracting the gold from the hills. After a few years, gold became harder and harder to 

find. When the miners came home with empty pans, they decided to move on, to follow 

the trail of gold. They abandoned their small town and, within months, Goldfield, 

Arizona lay deserted, a ghost town. 

Overshoot and collapse is a behavior in which a stock, in the case of Goldfield, 

the population of the town, relies upon a depletable resource, gold. When the gold is 

abundant, the population grows quickly. As the population grows, however, it depletes 

the supply of gold. When gold becomes scarce, the population drops rapidly as the 

miners leave to try their luck elsewhere. 

This paper introduces a structure that produces the behavior of overshoot and 

collapse and examines other behaviors that the structure can generate. Several examples 

illustrate the study of systems containing the structure. The exercises at the end of the 

paper provide the reader with an opportunity to see how knowledge about structure and 

behavior can be transferred between different systems. 

Mesa is a city in Mariscopa county, south-central Arizona. Its site was settled in 1878 by Mormons. 
(From the Encyclopædia Britannica.) 

1
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2. OVERSHOOT AND COLLAPSE: THE BEHAVIOR 

Overshoot and collapse is a common behavior of complex systems. Figure 1 

shows its characteristic behavior. 

Stock asymptotic exponential
growth 

exponential 
growth 

asymptotic 
decline 

decline 

time 

Figure 1: Overshoot and collapse 

At first, the system’s behavior seems satisfactory—the stock of interest, such as 

the rapidly growing population of Goldfield, Arizona, grows exponentially. Exponential 

growth, however, is not sustainable. The increasing stock soon starts to cause the 

depletion of a necessary and often nonrenewable resource, such as gold. The stock’s 

growth slows down. Then, after some time, the declining resource causes the growth to 

stop completely. Because of the lack of the resource, the stock starts decreasing and 

quickly collapses—as when all the gold miners abandon Goldfield. 

The following examples present two systems that exhibit the behavior of 

overshoot and collapse. Each example first examines the structure of the system and then 

explains how the structure produces the observed behavior. 

2.1 Example 1: Petroleum Extraction 

The first example examines the number of wells in a petroleum field. Companies 

drill wells to tap into the petroleum reserves under the ground. As more wells extract 

petroleum, the reserves start to decline, so the drilling of new wells slows down. In 

addition, the lower level of petroleum reserves reduces the amount of petroleum that each 

well can extract. As the extraction per well falls, some of the wells stop extracting and 

close. Eventually, the recoverable reserves are depleted, no more extraction is possible, 

and all wells close. 

Figure 2 shows a possible model of the system; documented equations are in 

section 7.1 of the Appendix. 
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NORMAL DRILLING FRACTION NORMAL CLOSING FRACTION 

Wells 
closing wells 

MAXIMUM EXTRACTION 
PER WELL 

~ 
effect of extraction 
on closing fraction 

Petroleum Reserves 

extraction ~ 
effect of reserves on 
extraction per well 

drilling wells 

~ 
effect of reserves 
on drilling fraction 

closing fraction 

extraction per well 

drilling fraction 

INITIAL PETROLEUM RESERVES 

Figure 2: Model of petroleum extraction 

The number of “Wells” on a field increases by an inflow of “drilling wells” 

dependent on the number of “Wells” and on a variable “drilling fraction.” The “drilling 

fraction” is the product of a “NORMAL DRILLING FRACTION” and a multiplier called 

“effect of reserves on drilling fraction.” The multiplier expresses a positive relationship 

between the fraction of “Petroleum Reserves” remaining and the “drilling fraction.”3  The 

fraction of “Petroleum Reserves” remaining is the ratio of the current level of “Petroleum 

Reserves” to the “INITIAL PETROLEUM RESERVES.” A decrease in the ratio means 

that less “Petroleum Reserves” remain, so less petroleum can be extracted, and the 

incentive to drill new wells is lower. Hence, the “drilling fraction” decreases. 

The stock of “Wells” also has an outflow, “closing wells,” which is the product of 

a “NORMAL CLOSING FRACTION” and an “effect of extraction on closing fraction.” 

The “effect of extraction on closing fraction” is a nonlinear function showing the effect of 

“extraction per well,” as compared to “MAXIMUM EXTRACTION PER WELL,” on the 

“closing fraction.” A decrease in the ratio of “extraction per well” to “MAXIMUM 

EXTRACTION PER WELL” means that extraction is becoming more difficult, and some 

owners choose to close the wells. The “closing fraction” therefore increases. The actual 

“extraction per well” is the product of “MAXIMUM EXTRACTION PER WELL” and 

3 A positive relationship between two variables means that the variables move in the same direction. 
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an “effect of reserves on extraction per well” multiplier. The multiplier reflects a positive 

relationship between petroleum extraction and reserves. As the fraction of “Petroleum 

Reserves” remaining decreases, extraction becomes more difficult, so the “extraction per 

well” decreases. 

Finally, because petroleum is a nonrenewable resource, the stock of “Petroleum 

Reserves” has no inflow. The outflow from “Petroleum Reserves” is the total amount of 

“extraction” per year, which is the product of “extraction per well” and the number of 

“Wells.” 

Figure 3 shows the behavior generated by the petroleum extraction model. 

1: Wells	 2: Petroleum Reserves 
1: 
2: 

1: 
2: 

1: 
2: 

50.00 
1.00e+09 

25.00 
5.00e+08 

0.00 
0.00 

2 2 

2 

2 

1 

1 

1 

1 

0.00	 7.50 15.00 22.50 30.00 

Years 

Figure 3: Behavior of “Wells” and “Petroleum Reserves” 

Initially, the number of “Wells” is low but growing exponentially, starting the 

depletion of “Petroleum Reserves.” As “Petroleum Reserves” fall, extraction becomes 

more difficult. Hence, “extraction per well” decreases, causing an increase in the 

“closing fraction” through the “effect of extraction on closing fraction.” In addition, the 

declining “Petroleum Reserves” cause a decrease in the “drilling fraction,” further 

slowing down the growth of “Wells.” Eventually, the “closing fraction” becomes larger 

than the “drilling fraction,” and the outflow of “closing wells” exceeds the inflow of 

“drilling wells.” The number of “Wells” starts declining. Because the number of 

“Wells” is still large, “Petroleum Reserves” continue to decline. The number of “Wells” 

decreases rapidly. As long as any “Wells” remain, the decline of “Petroleum Reserves” 

continues. Finally, after 25% of the “Petroleum Reserves” have been depleted, extraction 
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becomes nearly impossible.4  So the “Wells” close even though 75% of the initial amount 

of “Petroleum Reserves” still remains. 

2.2 Example 2: Deer Population 

The second example examines the behavior of a deer population with a limited 

amount of vegetation available. Figure 4 shows a model of the system. Documented 

equations are in section 7.2 of the Appendix. 

Deer 
births deaths 

BIRTH FRACTION 

~ 

effect of vegetation 
on death fraction 

consumption per deer 

Vegetation 

consumption 

~ 
effect of vegetation on 
consumption per deer 

growth 

GROWTH PER UNIT 
OF VEGETATION 

NORMAL DEATH FRACTION 

NORMAL CONSUMPTION 

NORMAL AMOUNT 
OF VEGETATION 

death fraction 

PER DEER 

Figure 4: Model of the deer population 

Notice that the structure of the model is similar to the structure of the petroleum 

extraction model from section 2.1 with only a few differences. Petroleum is a 

nonrenewable resource: it has no inflow, only an outflow. On the other hand, the 

“Vegetation” in the deer population model is able to regenerate and grow. The stock of 

“Vegetation” is increased by “growth” and decreased by “consumption.” The inflow of 

4 Petroleum pumps take advantage of the pressure difference between the bottom of the well and the section 
of the rock deep underground that contains the petroleum. As petroleum is extracted, the pressure 
difference decreases. Typically, by the time 25% of the reserves have been extracted, the pressure on both 
ends of the pump equalizes, and any further extraction would require expensive artificial means of 
maintaining the pressure difference. 



10	 D-4480 

“growth” is determined by the amount of “Vegetation” and by a constant fraction of 

“GROWTH PER UNIT OF VEGETATION.” 

Another difference between the two models is that the “drilling fraction” in 

Example 1 depends on the amount of “Petroleum Reserves” remaining, while the “birth 

fraction” in the deer population model is assumed to be independent of the amount of 

“Vegetation” left. 

A comparison of the two models shows that the underlying structure of the two 

systems is similar. Likewise, one can expect the models to produce similar behaviors. 

The deer population model generates the behavior shown in Figure 5. 

1: Deer	 2: Vegetation 
1: 
2: 

1: 
2: 

1: 
2: 

10000.00 
20000.00 

5000.00 
10000.00 

0.00 
0.00 

2 

2 
1 

1 

1 
2 

1 

2 
0.00	 5.00 10.00 15.00 20.00 

Years 

Figure 5: Behavior of “Vegetation” and “Deer” 

The behavior of the deer population model is similar to the behavior of the 

petroleum extraction model. Initially, the amount of “Vegetation” is sufficient to support 

all of the “Deer.” The number of “Deer” is so low that the “growth” of “Vegetation” is 

higher than “consumption,” so “Vegetation” increases. The increase in “Vegetation” is 

possible because, unlike “Petroleum Reserves,” the stock of “Vegetation” has an inflow. 

Consequently, the “effect of vegetation on death fraction,” and hence the “death fraction” 

is low, so deer “deaths” are fewer than “births.” The population of “Deer” increases 

exponentially. The increase in “Deer,” however, means more demand for food, and soon 

the “consumption” rate becomes higher than the natural rate of “growth,” so 

“Vegetation” starts to decline. A lower amount of “Vegetation” means less food per 

deer, which, through the “effect of vegetation on death fraction,” increases the “death 

fraction.” The “death fraction” becomes equal to the “BIRTH FRACTION” around year 

12. The “Deer” population no longer grows. Thus, after a period of exponential growth, 
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the population peaks and starts declining. Because the number of “Deer” is still high, 

“consumption” is also high, so “Vegetation” keeps decreasing. The depletion of 

“Vegetation" continues as long as “consumption” by the “Deer” is higher than “growth.” 

The “Deer” population, just like the number of “Wells” in the previous example, 

collapses. 

A similar behavior may occur repeatedly within a system. After most of the deer 

die, “consumption” becomes small, and the natural rate of “growth” will cause the 

“Vegetation” to start growing again. If at least a few deer managed to survive the 

temporary shortage of food, the population might start growing again, and the behavior of 

overshoot and collapse could repeat in the future. 
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3. THE GENERIC STRUCTURE 

3.1 Model Diagram 

The two models discussed in the examples from section 2 share the same basic 

structure that generates their similar behavior. Figure 6 shows the generic structure 

which produces overshoot and collapse. 

Stock 
inflow outflow 

COMPOUNDING FRACTION 

~ 

effect of resource 
on loss fraction 

loss fraction 

Resource 

consumption 

~ 
effect of resource on 

consumption per unit of stock 

consumption 
per unit of stock 

NORMAL LOSS FRACTION 

NORMAL CONSUMPTION 
PER UNIT OF STOCK 

NORMAL AMOUNT 
OF RESOURCE 

Figure 6: Generic structure producing overshoot and collapse 

(with a nonrenewable resource) 

The structure is composed of several feedback loops. The only positive feedback 

loop in the system is the loop that joins the “Stock” to the “inflow”: an increase in the 

“Stock” causes and increase in the “inflow,” which in turn causes a further increase in the 

“Stock.” As a counterpart to the positive feedback loop, the system also contains a 

simple negative feedback loop between the “Stock” and the “outflow”: as the “Stock” 

increases, the “outflow” increases, causing a decrease in the “Stock.” 

The system also contains negative feedback loops that control the growth of the 

“Stock.” One of the loops shows a negative relationship between the amount of the 

“Stock” and the amount of the “Resource.” An increase in the “Stock” increases 
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“consumption,” thus decreasing the “Resource.” A decrease in the “Resource,” however, 

increases the “loss fraction” through the “effect of resource on loss fraction,” and thus the 

“outflow” increases and the “Stock” decreases. In addition, if the amount of “Resource” 

increases,5 the “consumption per unit of stock” also increases through the “effect of 

resource on consumption per unit of stock.” Thus, the total “consumption” increases, 

causing a decrease in the “Resource.” 

The structure contains two stock variables. The first one is referred to as “Stock” 

because it is the stock of interest to the modeler. In the two examples in section 2, the 

number of “Wells” and the population of “Deer” correspond to the “Stock.” The second 

stock variable is called “Resource” because it is a resource necessary for the existence of 

the “Stock.” The “Resource” corresponds to “Petroleum Reserves” and “Vegetation” in 

the two examples. 

The “Stock” increases by an “inflow,” the product of the “Stock” and a usually 

constant “COMPOUNDING FRACTION.” Examples of an “inflow” include “drilling 

wells” and “births” in the preceding examples. The “outflow” from the “Stock” is 

determined by the amount of the “Stock” and a variable “loss fraction.” In the petroleum 

extraction model, the “outflow” corresponds to “closing wells,” and in the deer 

population example, the “outflow” corresponds to “deaths.” The “loss fraction,” the 

equivalent of the “closing fraction” and the “death fraction,” is the product of a 

“NORMAL LOSS FRACTION” and an “effect of resource on loss fraction” multiplier. 

The multiplier is a table function expressing the negative relationship between the “loss 

fraction” and the fraction of the “Resource” remaining, which is the ratio of the 

“Resource” to the “NORMAL AMOUNT OF RESOURCE.” As the ratio declines, the 

“Resource” becomes less available to the “Stock,” so the “loss fraction” increases. 

The “Resource” is depleted by “consumption,” the product of the number of units 

of the “Stock” and the “consumption per unit of stock.” In the generic structure, 

“consumption” corresponds to “extraction” of petroleum and “consumption” of 

vegetation in the examples from section 2. The “consumption per unit of stock” depends 

on the “NORMAL CONSUMPTION PER UNIT OF STOCK” and on an “effect of 

resource on consumption per unit of stock.” The “effect of resource on consumption per 

unit of stock” is a table function showing that as the ratio of “Resource” to “NORMAL 

AMOUNT OF RESOURCE” decreases, the “Resource” is less available to the “Stock,” 

so “consumption per unit of stock” also decreases. 

5 Note that an increase in the amount of “Resource” is impossible if the “Resource” is nonrenewable. The 
analysis of the feedback loop, however, is simpler with the assumption of an initial increase in the 
“Resource.” 
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In some cases, as in the deer population model in section 2.2, the “Resource” may 

be increased by regeneration, as “Vegetation” is increased by “growth.” The addition of 

an inflow to the “Resource” affects the behavior of the model to some degree. In the deer 

population model, “Vegetation” was growing initially, and thus the population of “Deer” 

was able to grow to a larger number than it would have grown without the “growth” of 

“Vegetation.” The overall behavior of overshoot and collapse, however, was still present 

in the system. As long as the regeneration inflow to the “Resource” is not significantly 

stronger than the outflow of “consumption,” regeneration will not have a considerable 

effect on the qualitative behavior of the system. 

3.2 Model Equations 

The following are the equations for the generic structure producing overshoot and 

collapse. The constant numerical values used to run the simulation were chosen 

arbitrarily and do not carry any meaning. 

Resource(t) = Resource(t - dt) + (- consumption) * dt 

INIT Resource = a constant 

DOCUMENT: The resource that the stock consumes. It corresponds to the 

“Vegetation” and the “Petroleum Reserves” in the examples above. It can either 

be nonrenewable, as “Petroleum Reserves,” or renewable, as “Vegetation.” Note 

that the addition of a flow renewing the resource is a structural change to the 

model. 

Units: units of resource 

OUTFLOWS: 

consumption = Stock * consumption_per_unit_of_stock 

DOCUMENT: The rate at which the resource is consumed or depleted. It 

corresponds to “extraction” and “consumption” in the examples above. 

Units: units of resource/unit of time 

Stock(t) = Stock(t - dt) + (inflow - outflow) * dt 

INIT Stock = a constant 

DOCUMENT: The stock that consumes the resource. It corresponds to “Wells” 

and “Deer” in the examples above. 

Units: units of stock 
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INFLOWS: 

inflow = Stock * COMPOUNDING_FRACTION 

DOCUMENT: The inflow is the fraction of the stock that flows into the system 

per unit of time. It corresponds to “drilling wells” and “births” in the examples 

above. 

Units: units of stock/unit of time 

OUTFLOWS: 

outflow = Stock * loss_fraction 

DOCUMENT: The outflow is the fraction of the stock that flows out of the 

system per unit of time. It corresponds to “closing wells” and “deaths” in the 

examples above. 

Units: units of stock/unit of time 

COMPOUNDING_FRACTION = a constant 

DOCUMENT: The “COMPOUNDING FRACTION” along with the “Stock” 

determines the “inflow” to the “Stock.” It corresponds to the “NORMAL 

DRILLING FRACTION” and “BIRTH FRACTION” in the examples above. It 

can either be constant, as the “BIRTH FRACTION” in the deer population model, 

or can be affected by the percentage of “Resource” remaining, as the “NORMAL 

DRILLING FRACTION” in the petroleum extraction model. 

Units: 1/unit of time 

consumption_per_unit_of_stock = NORMAL_CONSUMPTION_PER_UNIT_OF_ 

STOCK * effect_of_resource_on_consumption_per_unit_of_stock 

DOCUMENT: Consumption of the resource by the stock per unit of time. It 

depends on the “NORMAL CONSUMPTION PER UNIT OF STOCK” as well as 

on the “effect of resource on consumption per unit of stock.” It corresponds to the 

“extraction per well” and “consumption per deer” in the examples above. 

Units: (units of resource/units of stock)/unit of time 

NORMAL_AMOUNT_OF_RESOURCE = a constant 

DOCUMENT: The normal amount of resource. It corresponds to the “INITIAL 

PETROLEUM RESERVES” and “NORMAL AMOUNT OF VEGETATION” in 

the examples above. 

Units: unit of resource 
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loss_fraction = NORMAL_LOSS_FRACTION * effect_of_resource_on_loss_fraction


DOCUMENT: The fraction of the stock that is lost per unit of time. It depends


on the “NORMAL LOSS FRACTION” and on the “effect of resource on loss


fraction.” It corresponds to the “closing fraction” and “death fraction” in the


examples above.


Units: 1/unit of time


NORMAL_CONSUMPTION_PER_UNIT_OF_STOCK = a constant


DOCUMENT: The amount of resource that a unit of stock consumes per unit of


time while the resource is readily available. It corresponds to the “MAXIMUM


EXTRACTION PER WELL” and “NORMAL CONSUMPTION PER DEER” in


the examples above.


Units: (units of resource/units of stock)/unit of time


NORMAL_LOSS_FRACTION = a constant


DOCUMENT: The fraction of the stock that is lost given a “NORMAL


AMOUNT OF RESOURCE.” It corresponds to the “NORMAL CLOSING


FRACTION” and “NORMAL DEATH FRACTION” in the examples above.


Units: 1/unit of time


effect_of_resource_on_consumption_per_unit_of_stock =


GRAPH (Resource/NORMAL_AMOUNT_OF_RESOURCE)


(0.00, 0.00), (0.1, 0.365), (0.2, 0.6), (0.3, 0.75), (0.4, 0.855), (0.5, 0.91), (0.6,


0.955), (0.7, 0.98), (0.8, 0.99), (0.9, 1.00), (1, 1.00)


1.00 

1.00Resource/NORMAL 
AMOUNT OF RESOURCE 

ef
fe

ct
 o

f r
es

ou
rc

e 
on

co
ns

um
pt

io
n 

pe
r 

un
it 

of
 s

to
ck

 

0.00 
0.00 

DOCUMENT: The effect of the remaining percentage of the resource on the 

consumption per unit of stock. It corresponds to the “effect of reserves on 
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extraction per well” and “effect of vegetation on consumption per deer” in the 

examples above.6 

Units: dimensionless 

effect_of_resource_on_loss_fraction =


GRAPH(Resource/NORMAL_AMOUNT_OF_RESOURCE)


(0.00, 10.0), (0.1, 4.90), (0.2, 3.00), (0.3, 2.20), (0.4, 1.70), (0.5, 1.45), (0.6, 1.30),


(0.7, 1.20), (0.8, 1.12), (0.9, 1.05), (1, 1.00)


10.00 

0.00 
0.00 Resource/NORMAL 

AMOUNT OF RESOURCE 
1.00 

DOCUMENT: The effect of the remaining percentage of the resource on the loss 

fraction. It corresponds to the “effect of reserves on closing fraction” and “effect 

of vegetation on death fraction” in the examples above.7 

Units: dimensionless 

ef
fe

ct
 o

f r
es

ou
rc

e 
on

 lo
ss

 fr
ac

tio
n 

6 The shape and assumptions of the “effect of resource on consumption per unit of stock” table function

will be explained in section 4.1.

7 The shape and assumptions of the “effect of resource on loss fraction” table function will be explained in

section 4.2.
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3.3 Model Behavior 

Figure 7 shows the behavior produced by the generic structure. 

1: Stock	 2: Resource 
1: 100.00 
2: 1000.00 

1: 50.00 
2: 500.00 

1: 0.00 
2: 0.00 

2 

2 

1 

1 

1 
2 

1 
2 

0.00	 10.00 20.00 30.00 40.00 
Time 

Figure 7: Overshoot and collapse behavior produced by the generic structure 

Initially, the positive feedback loop composed of the “inflow” and the “Stock” 

drives the exponential growth of the “Stock.” The exponential increase in the “Stock” 

causes “consumption” to also increase exponentially. Consequently, the “Resource” 

decreases exponentially, causing the “loss fraction” to increase exponentially. The slope 

of the net flow8 into the “Stock” begins to decrease to zero. 

Soon, the increasing “loss fraction” makes the “outflow” increase faster than the 

“inflow,” but the “inflow” is still larger than the “outflow.” The slope of the net flow is 

then negative: the net flow decreases but is still positive. A graph showing the behavior 

of the net flow is shown in Figure 8. 

8 The net flow is defined as “inflow” - “outflow.” The net flow is not part of the model; however, for better 
understanding of the structure, it is useful to create a converter called “net flow” in the model, and to 
observe its behavior on a graph. 
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1: net flow 
20.00 

0.00 

-20.00 

1 

1 

exponential growth 
of Stock 

exponential 
decline of Stock 

1 

1 

asymptotic growth 
of Stock 

asymptotic
 decline of Stock 

Stock at maximum value 

0.00	 10.00 20.00 30.00 40.00 
Time 

Figure 8: Net flow into the “Stock” of the generic structure 

Meanwhile, as the growth rate slows because of the decreasing net flow, the 

“Stock” stops growing exponentially; its growth becomes asymptotic. The “Resource” 

continues being depleted through “consumption,” and the “loss fraction” continues to 

grow. Then, the value of the “loss fraction” reaches the value of the “gain fraction,” and 

the “outflow” reaches the “inflow.” Thus, the net flow is zero (it is still decreasing), and 

the “Stock” peaks. In Figure 9, the dashed line at time 18 indicates that the “Stock” 

reaches its maximum when the “outflow” equals the “inflow” (net flow is equal to 0). 

1: Stock 2: inflow	 3: outflow 
1: 100.002: 
3: 

1: 
2: 50.003: 

1: 
2: 
3: 0.00 

0.00	 10.00 20.00 30.00 40.00 
Time 

1 

1 

1 

12 

2 
2 

23 

3 3 

3 

exponential 
growth 

asymptotic 
growth 

exponential
 decline 

asymptotic 
decline 

Stock at maximum value 

Figure 9: Behavior of “Stock,” “inflow,” and “outflow” of the generic structure 
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The lack of “Resource” causes the “loss fraction” to keep increasing, and the 

“outflow” exceeds the “inflow” (the net flow becomes negative). As soon as the net flow 

becomes negative, the “Stock” reverses direction and starts decreasing. The “outflow” 

still increases because of the growing “loss fraction,” while the “inflow” has started to 

decrease as a result of the decrease in the “Stock.” The slope of the “Stock,” which is 

equal to the net flow into the “Stock,” becomes increasingly negative. The “Stock” is 

declining exponentially. 

However, as the “Stock” starts decreasing, the decrease in “Resource” is no 

longer exponential, but asymptotic. As a result, the “loss fraction” also stops increasing 

exponentially and switches to asymptotic growth. Consequently, the “outflow” starts 

decreasing because of the decrease in “Stock,” and the net flow starts increasing again. 

The net flow still stays negative, however, causing a further, although slower, asymptotic 

decline of the “Stock.” The net flow eventually approaches zero, and the “Stock” 

stabilizes at zero. 

It is crucial to realize that the overshoot and collapse behavior occurs because the 

“loss fraction” is not constant but varies with the amount of “Resource.” As the 

“Resource” is being consumed, the “loss fraction” increases and so does the “outflow.” 

As soon as the “outflow” exceeds the “inflow,” the collapse of the “Stock” begins and 

continues until the “Stock” reaches zero. 

The goal value of the “Stock” and the only possible equilibrium in the generic 

structure is zero. The “Resource” cannot reach equilibrium as long as the “Stock” is 

greater than zero. If the initial amount of “Resource” is sufficiently large to permit 

growth of the “Stock,” then even a slight initial disturbance of the “Stock” away from 

zero starts off the “consumption” of the “Resource.” The slight initial disturbance 

produces the overshoot and collapse behavior that leads the “Stock” to stabilize at zero 

again. 

4. TABLE FUNCTIONS IN THE GENERIC STRUCTURE 

The generic structure producing overshoot and collapse presented in section 3 

contains two table functions: the “effect of resource on consumption per unit of stock” 
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and the “effect of resource on loss fraction.”  9  This section explains the shape of the table 

functions and their effect on model behavior. 

4.1 “Effect of resource on consumption per unit of stock” table function 

The “effect of resource on consumption per unit of stock” table function is an 

increasing curve with a decreasing slope, with values ranging from 0 to 1 on both axes. 

Figure 10 shows the graph of the table function. 
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Figure 10: The “effect of resource on consumption per unit of stock” table function 

The slope of the function is positive because of the positive relation between the 

“consumption per unit of stock” and the fraction of the “Resource” remaining, which is 

the ratio of “Resource” to “NORMAL AMOUNT OF RESOURCE.” The higher the 

ratio, the higher the “consumption per unit of stock,” so the table function gives a high 

value. As the ratio decreases, so does “consumption per unit of stock,” so the table 

function outputs a lower value. 

In addition, the curve of the table function increases with a decreasing slope. If 

the “Resource” is still relatively high as a fraction of the “NORMAL AMOUNT OF 

RESOURCE,” “consumption per unit of stock” is not greatly affected. The “effect of 

9 In some models, additional table functions might be necessary to represent the feedback mechanisms of 
the system. For example, the petroleum extraction model from section 2.1 contains a table function of the 
“effect of reserves on drilling fraction” because it can be argued that the remaining amount of “Petroleum 
Reserves” not only affects the rate of “closing wells,” but also the rate of “drilling wells.” For simplicity, 
however, the table function of the “effect of resource on compounding fraction” was omitted from the 
generic structure. 
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resource on consumption per unit of stock” is then close to 1. In Figure 10, for example, 

the table function outputs values greater than 0.9 for values of the ratio greater than 0.5. 

As the “Resource” decreases further, however, the “effect of resource on consumption 

per unit of stock” becomes stronger, so the table function declines more steeply. 

The table function ranges from 0 to 1 for both the ratio of “Resource” to 

“NORMAL AMOUNT OF RESOURCE” and for the “effect of resource on consumption 

per unit of stock.” When the “Resource” is equal to the “NORMAL AMOUNT OF 

RESOURCE” (the ratio is equal to 1), “consumption per unit of stock” is equal to the 

“NORMAL CONSUMPTION PER UNIT OF STOCK,” and the table function has a 

value of 1. As the ratio decreases, however, the “Resource” becomes more difficult to 

obtain, so “consumption per unit of stock” becomes smaller than the “NORMAL 

CONSUMPTION PER UNIT OF STOCK.” The table function then outputs a value 

between 0 and 1. When the “Resource” is completely depleted (the ratio is equal to 0 

because “Resource” is equal to 0), “consumption per unit of stock” must also be equal to 

0, so the table function outputs the value of 0. If the amount of “Resource” is greater 

than the “NORMAL AMOUNT OF RESOURCE” (the ratio is greater than 1), the table 

function will output the value of 1 by default because it is assumed that “consumption per 

unit of stock” is never greater than the “NORMAL CONSUMPTION PER UNIT OF 

STOCK,” even if the “Resource” is overabundant. 

The reader may try to change the shape of the table function to see that, as long as 

the table function is increasing, the exact shape does not determine the behavior of the 

model. Even if the table function is linear or has an increasing slope, the model still 

exhibits overshoot and collapse. 

4.2 “Effect of resource on loss fraction” table function 

The “effect of resource on loss fraction” table function is a curve whose negative 

slope decreases in magnitude. The curve ranges from 0 to 1 for the ratio of “Resource” to 

“NORMAL AMOUNT OF RESOURCE,” and from 1 to a higher value for the “effect of 

resource on loss fraction.” Figure 11 shows the graph of the table function. 
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Figure 11: The “effect of resource on loss fraction” table function 

The slope of the function is negative because of the negative relationship between 

the “loss fraction” and the fraction of “Resource” remaining, which is the ratio of 

“Resource” to “NORMAL AMOUNT OF RESOURCE.” The higher the fraction of the 

“Resource” remaining, the closer the “loss fraction” to the “NORMAL LOSS 

FRACTION,” so the table function outputs a value close to 1. As the ratio decreases, the 

“loss fraction” becomes more significant, so the table function outputs a value larger than 

1. 

The “effect of resource on loss fraction” table function has a negative slope that 

decreases in magnitude. While the fraction of the “Resource” remaining is still high, the 

depletion of the “Resource” will not have a strong impact on the “loss fraction.” For 

example, in the table function in Figure 11, the “effect of resource on loss fraction” is 

lower than 2 when the fraction of “Resource” remaining is greater than 0.4. As the 

“Resource” declines further, however, its effect on the “loss fraction” becomes stronger, 

so the curve is steeper as the ratio decreases. 

The table function ranges from 0 to 1 for the fraction of the “Resource” 

remaining. When the “Resource” is equal to (or even greater than) the “NORMAL 

AMOUNT OF RESOURCE,” the “loss fraction” is equal to the “NORMAL LOSS 

FRACTION.” The table function then outputs a value of 1.10  The minimum value of the 

“effect of resource on loss fraction” is therefore 1. As the remaining fraction of 

“Resource” decreases, the “loss fraction” becomes higher than the “NORMAL LOSS 

FRACTION,” so the table function outputs values greater than 1. 

10 Assuming that an overabundance of the “Resource” will not reduce the “loss fraction” below the value of 
the “NORMAL LOSS FRACTION.” 
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The maximum value of the “effect of resource on loss fraction” can significantly 

affect the behavior of the model. In the generic structure, the maximum value is set to 

10. Thus, the “loss fraction” becomes ten times the “NORMAL LOSS FRACTION” 

when the “Resource” is completely depleted. If the value of the “COMPOUNDING 

FRACTION” is less than ten times the “NORMAL LOSS FRACTION,” then the “loss 

fraction” will eventually become greater than the “COMPOUNDING FRACTION.” 

When the “loss fraction” is greater than the “COMPOUNDING FRACTION,” the 

“outflow” will be greater than the “inflow,” and the “Stock” will decline. 

As soon as the table function outputs a value that makes the “loss fraction” greater 

than the “COMPOUNDING FRACTION,” the “Stock” will start to decline. With the 

values used to produce the simulation of the generic structure (“COMPOUNDING 

FRACTION” = 0.25, “NORMAL LOSS FRACTION” = 0.1), the “outflow” reaches the 

“inflow” when the table function outputs the value of 2.5. Because the table function 

ranges up to 10, the “outflow” will significantly exceed the “inflow” when the 

“Resource” is almost depleted, and thus the “Stock” collapses. 

5. SUMMARY OF IMPORTANT CHARACTERISTICS 

• Structure 

The structure generating overshoot and collapse is a second-order negative 

feedback loop. The “Stock” feeds on the “Resource” whose depletion eventually causes 

the “Stock” to collapse. The “loss fraction” that determines the “outflow” from the 

“Stock” depends on the remaining amount of “Resource.” The “Resource” does not have 

to be nonrenewable but should at least be slow to regenerate. 

• Behavior 

Initially, the “Stock” undergoes exponential growth. Because of the accumulating 

“Stock,” the “Resource” is depleted. The negative feedback from the “Resource” to the 

“loss fraction” slows the growth of the “Stock,” until the “outflow” becomes greater than 

the “inflow,” which causes a reversal of the behavior: the negative feedback loop of the 

“outflow” becomes very strong and the “Stock” collapses. 
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6. USING INSIGHTS GAINED FROM THE GENERIC STRUCTURE 

Generic structures are useful because they help a modeler to transfer knowledge 

among different systems. The following exercises will emphasize the concept of 

transferability of structure. 

6.1 Exercise 1: Health Deterioration 

This exercise discusses the effects of too much work on a person’s health. 

Bryant, a graduate student, just started working on a new project. At the beginning, he is 

excited and enthusiastic about the project, so he starts spending more time working on the 

project than the usual eight hours a day. As he spends more and more time on the 

project, he starts getting tired and becomes ill—his health deteriorates. Eventually, by 

the time Bryant works more than 15 hours a day, his health becomes so weak that he has 

to quickly start cutting back on the number of hours he works, until he stops working 

completely. 

Using the generic structure from section 3, build a model showing how the 

number of hours Bryant spends on the project exhausts his health. Additional variables 

or parameters may need to be added to the generic structure. 

First choose the variables corresponding to the “Stock” and the “Resource.” For 

Bryant, the number of hours he spends on the project every day depletes his health. The 

level of the resource of health can be measured on a scale either from 0 to 1, or from 0 to 

100, representing the percentage of Bryant’s health remaining. Assume that initially 

Bryant is perfectly healthy. Also assume that, as Bryant’s health declines, the fraction of 

his health that deteriorates for every additional hour he works becomes smaller. Note 

that the time horizon of the model (approximately a month) is too short for Bryant’s 

health to recover significantly. 
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6.2 Solution to Exercise 1 

Figure 16 shows a possible health deterioration model. 

are in section 7.3 of the Appendix. 

Documented equations 

Hours Worked Per Day 
increase in hours decrease in hours 

Health 

health deterioration 

~ 

effect of health on 
decrease fraction 

NORMAL DECREASE 
FRACTION 

decrease fraction 

NORMAL HEALTH DETERIORATION 

~ 
effect of health on health 

deterioration per hour worked 

health deterioration 
per hour worked 

INITIAL HEALTH 

INCREASE FRACTION 

PER HOUR WORKED 

Figure 12: Model of Bryant’s health 

One can build a model of Bryant’s health that has the same structure as the 

generic structure presented in section 3. The stock of “Hours Worked Per Day” has an 

inflow of “increase in hours,” determined by the number of “Hours Worked Per Day” and 

a constant “INCREASE FRACTION.” The “increase in hours” positive feedback loop 

shows that the more Bryant works on the project, the more he likes it, causing him to 

work even more. The number of “Hours Worked Per Day” decreases through a 

“decrease in hours,” which is the product of the “Hours Worked Per Day” and a 

“decrease fraction.” The “decrease fraction” depends on a “NORMAL DECREASE 

FRACTION” and an “effect of health on decrease fraction” multiplier. The multiplier 

reflects a negative relationship between “Health” and the “decrease fraction”: as the ratio 

of “Health” to “INITIAL HEALTH” decreases, the “decrease fraction” increases. While 
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his “Health” is still relatively strong, the “effect of health on decrease fraction” will be 

quite small. As his “Health” declines further, the multiplier outputs a higher value, until 

it reaches the value of 100, which occurs when Bryant’s “Health” has dropped 70 

percent. Such a high value for the multiplier emphasizes the fact that Bryant would start 

cutting back on his hours quite drastically if he started to become seriously ill. 

Bryant’s “Health” becomes worse as he works more hours every day. His “health 

deterioration” is the product of the number of “Hours Worked Per Day” and a fraction 

called “health deterioration per hour worked.” The fraction is determined by a 

“NORMAL HEALTH DETERIORATION PER HOUR WORKED” and a multiplier 

called “effect of health on health deterioration per hour worked.” The multiplier shows 

that as the ratio of Bryant’s “Health” to his “INITIAL HEALTH” decreases, “health 

deterioration per hour worked” becomes smaller. Over a one-month time horizon, 

Bryant’s “Health” will not be able to regenerate significantly, so “Health” does not have 

an inflow. 

Figure 17 shows the behavior of the model. 

1: Hours Worked Per Day	 2: Health 
1: 
2: 

1: 
2: 

1: 
2: 

16.00 
100.00 

8.00 
50.00 

0.00 
0.00 

2 

1 
2 

1 1 

2 2 

1 

0.00	 10.00 20.00 30.00 40.00 
Days 

Figure 13: Behavior of the health deterioration model 

As Bryant starts spending more hours working on the project every day, his 

“Health” starts deteriorating slowly. After approximately 16 days of intensive work, 

when he works more that 15 hours every day, Bryant realizes the bad effects of too much 

work on his “Health,” so he starts working less and less. Eventually, after day 30, Bryant 

decides not to do any work at all, so his “Health” stops deteriorating. 
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6.3 Exercise 2: Mayan Population 

The second exercise examines a possible cause of the decline of the Mayan 

empire. Please read carefully the following excerpts from an article entitled “Study 

Depicts Mayan Decline.” 

One of the great mysteries of human history has been the sudden collapse 
of one of the main centers of Mayan civilization in Central America at a 
time when it was apparently at a peak of culture, architecture and 
population around A.D. 800. ... Just before the final cataclysm, the new 
research suggests, the population in one area ranged from about 200 to 
500 persons per square kilometer. ... Within two to four Mayan 
generations, which probably meant less than 100 years, the population 
dropped back to what it had been almost 2,000 years before—20 or less 
per square kilometer. ... [New] research ... showed there was an 
exponential growth in Mayan population during at least 1,700 years... 
Human numbers doubled every 408 years... [The population] grew at a 
steadily increasing pace, but, for many centuries, the growth was too slow 
for any single generation to see what was happening. ... Gradually-
intensified agriculture seems to have done severe cumulative damage to an 
originally verdant environment. To this was added the impact of increases 
in human dwellings and other major architectural works on the land. 
Essential nutrients washed, slid and were moved downhill to be lost in the 
lakes, diminishing the fertility of agricultural land. ... [The new research 
gives] documented estimates for the growth pattern of Mayan population 
and correlate[s] this growth with the damage to the environment that went 
with it. 11 

Based on the generic structure from section 3, build a model showing the collapse 

of the Mayan population after its environment is destroyed. Use the numerical values 

provided in the article to calculate approximate values for the model parameters. The 

model does not have to reproduce the generic structure exactly; additional converters or 

table functions may be needed to represent the system more realistically. Here are some 

additional hints for building the model: 

First, determine which variables correspond to the “Stock” and “Resource” of the 

generic structure. The “Stock” will most likely be the Mayan population, while the 

“Resource” could be an aggregate variable representing the state of the environment in 

which the population lives ranging from 0 to 100 percent of the environment capacity. 

Assume that initially the environment is undamaged. The time horizon of the simulation 

should be at least 2000 years, as specified in the article, and should include A.D. 800. 

Notice that it is not the actual level of the Mayan population that damages the 

environment, but rather the density of the population. Therefore, the model should 

11 From Harold M. Schmeck, Jr. “Study Depicts Mayan Decline.” New York Times, October 23, 1979. 
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contain a converter representing density, the ratio of the population to a constant land 

area. The size of land area is somewhat arbitrary; it should, however, be set such that the 

initial density is approximately 20 people per square kilometer, as indicated in the article. 

The density should then be compared to a normal value of density, to determine the effect 

of population density on the fraction of the environment that is damaged. The effect will 

in turn multiply a normal damage fraction to determine the actual fractional damage to 

the environment. 

In addition, the model should contain an inflow into the resource of the 

environment because the environment is renewable over a time horizon of 2000 years. 

Depending on the assumptions of the modeler, the time over which the environment 

regenerates may be either constant or may vary as a function of the environment. 
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6.4 Solution to Exercise 2 

Figure 18 shows a possible model of the Mayan population based on the 

description from section 6.3. Documented equations are in section 7.4 of the Appendix. 

Population 

births deaths 

BIRTH FRACTION 

~ 

effect of environment 
on death fraction 

death fraction 

State Of Environment 

damage to environment 

NORMAL DAMAGE FRACTION 

~ 
effect of density 

on damage fraction 

LAND AREA 
density 

environment regeneration 

regeneration time 

INITIAL STATE OF 
ENVIRONMENT 

~ 
effect of environment 
on regeneration time 

NORMAL DENSITY 

NORMAL DEATH FRACTION 

NORMAL 
REGENERATION TIME 

damage 
fraction 

Figure 14: Model of the Mayan population 

The two stocks in the model, corresponding to “Stock” and “Resource” of the 

generic structure, are “Population” and “State of Environment,” respectively. 

“Population” increases by “births,” the product of the “Population” and a constant 

“BIRTH FRACTION.” The outflow from “Population” is “deaths,” determined by the 

level of “Population” and a “death fraction.” The “death fraction” is the product of a 

“NORMAL DEATH FRACTION” and a multiplier called “effect of environment on 

death fraction.” The multiplier captures a negative relationship between the “State of 

Environment” and the “death fraction”: as the “State of Environment” declines, the 

“death fraction” rises. 

The “State of Environment” resource is depleted through an outflow of “damage 

to environment.” The “damage to environment” is the “damage fraction” of the “State of 
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Environment.” The “damage fraction” is the product of a “NORMAL DAMAGE 

FRACTION” and a multiplier called “effect of density on damage fraction.” The 

multiplier shows that as the “density” increases, the “damage fraction” becomes larger. 

The “effect of density on damage fraction” is a function of the ratio of the actual 

“density” to a “NORMAL DENSITY.” The “density” is the ratio of “Population” to a 

constant “LAND AREA.” 

Because environment is a renewable resource, “State of Environment” increases 

through an inflow of “environment regeneration.” The “environment regeneration” is 

determined by the “State of Environment” and a “regeneration time.” Assuming that the 

“regeneration time” varies with “State of Environment,” “regeneration time” is the 

product of a “NORMAL REGENERATION TIME” and an “effect of environment on 

regeneration time” multiplier. The multiplier shows that as the ratio of “State of 

Environment” to the “INITIAL STATE OF ENVIRONMENT” decreases, it takes longer 

for the environment to regenerate itself, so the “regeneration time” increases. 

Before running the model to see whether it demonstrates the expected behavior of 

overshoot and collapse of the Mayan population, the modeler should determine an 

appropriate time horizon for the model and decide on the time unit to be used in the 

simulation. As the article indicates, the Mayan population collapsed around A.D. 800 

after growing exponentially for at least 1700 years. With such a long time horizon over 

which the behavior occurred, running the simulation in units of years would be very slow. 

Thus, it might be more convenient to choose “Century” as a time unit, and to run the 

simulation from the 10th century B.C. to the 10th century A.D. 

The modeler must also specify values for constant parameters in the model, as 

well as determine the functional relationships captured by the table functions. To find the 

value of the “BIRTH FRACTION” and “NORMAL DEATH FRACTION,” remember 

that the article mentioned a population doubling time of 408 years, or 4.08 centuries, 

corresponding to a net growth fraction of approximately 0.18 per century.12  The net 

growth fraction is the difference between the “BIRTH FRACTION” and the “NORMAL 

DEATH FRACTION.” Thus, the modeler could pick the value of 2 per century for 

“BIRTH FRACTION,” and 2 – 0.18, or 1.82 per century, for “NORMAL DEATH 

FRACTION,” corresponding to an average lifetime of about 55 years.13 

12 Remember that the doubling time of exponential growth is approximately 0.7/compounding fraction. 
Thus the compounding fraction is 0.7/doubling time. For the Mayan population, the net growth fraction is 
0.7 / 4.08, which is approximately 0.18.

13 The average lifetime is calculated as 1/“NORMAL DEATH FRACTION.”
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The value of “LAND AREA” can be chosen by the modeler, but should have a 

specific relation to the initial value of the “Population” to give the historically observed 

initial value for “density” as described in the article, 20 people per square kilometer. For 

example, with a “LAND AREA” of 10,000 square kilometers, the initial value of 

“Population” would be 200,000 people. 

Considering that the “State of Environment” ranges on a scale from 0 to 100, it 

seems reasonable to choose the value of the “NORMAL DAMAGE FRACTION” to be, 

for example, 1 per century. Also, a reasonable value for “NORMAL REGENERATION 

TIME” could be 1 century.14 

The “effect of environment on death fraction” table function should have the same 

general shape as the “effect of resource on loss fraction” described in section 4. The 

multiplier takes on values close to 1 while the ratio of “State of Environment” to 

“INITIAL STATE OF ENVIRONMENT” is relatively high, and the multiplier only starts 

increasing significantly when the ratio decreases to approximately 0.25. When the ratio 

reaches 0, the multiplier has the value of 5. 

The “effect of density on damage fraction” table function represents the 

relationship between the “damage fraction” and the ratio of “density” to “NORMAL 

DENSITY.” According to the article, the “density” of the Mayan population in some 

areas reached up to 500 persons per square kilometer, leading to a value of 25 for the 

ratio (assuming that “NORMAL DENSITY” is the initial density of the population, 20 

persons per square kilometer). To have a more robust model, let the ratio range from 0 

up to, say, 35. As the ratio increases, the “effect of density on damage fraction” also 

increases. The table function, however, gives relatively small values when the ratio is 

less than 20. Then, even a small increase in the ratio leads to a large increase in the 

multiplier, so the slope of the table function will be large. The slope, however, flattens 

out as the ratio exceeds the value of 30. The “effect of density on damage fraction” 

eventually reaches the value of 50 as the ratio of “density” to “NORMAL DENSITY” 

reaches 35. 

Finally, the “effect of environment on regeneration time” multiplier shows the 

relationship between the environment “regeneration time” and the ratio of “State of 

Environment” to “INITIAL STATE OF ENVIRONMENT.” The multiplier stays close 

14 The exact value of the parameters will usually not have a significant effect on the overall behavior mode 
of the system. See Lucia Breierova, 1996. An Introduction to Sensitivity Analysis (D-4526), System 
Dynamics in Education Project, System Dynamics Group, Sloan School of Management, Massachusetts 
Institute of Technology, September 6, 40 pp. 
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to 1 for values of the ratio larger than 0.5, and then starts increasing faster up to the value 

of 2 when the ratio becomes 0. 

Figure 19 shows the behavior of the model. 

1: Population	 2: State Of Environment 
1: 5,000,000
2: 100.00 

1: 2,500,000 
2: 50.00 

1: 0.00 
2: 0.00 

2 2 2 

1 
2 

1 

1 

1 

10 cent. 	B.C. 5 cent. B.C. 0.00 5 cent. A.D. 10 cent. A.D. 
Centuries 

Figure 15: Behavior of the Mayan population model 

As expected, the model exhibits the overshoot and collapse behavior mode. The 

Mayan population grows exponentially from the 10th century B.C. to approximately the 

7th century A.D., when it peaks sharply and quickly collapses within about one century. 

The decline of the “State of Environment” is almost unnoticeable until around the 

4th century A.D. Then, as the “Population” rises, the “density” also increases, so the 

“effect of density on damage fraction” increases, causing a faster decline of the “State of 

Environment.” As the “State of Environment” declines, the “effect of environment on 

death fraction” multiplier rises sharply. Hence, the “death fraction” eventually exceeds 

the “BIRTH FRACTION,” causing a quick collapse of the “Population.” 

Therefore, the model closely replicates the behavior described in the article. As 

long as the reader’s model exhibits overshoot and collapse, it is not necessary to try to 

replicate the described behavior precisely. A closer fit to the historically observed 

behavior may be achieved by changing some parameter values or modifying the table 

functions. 
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7. APPENDIX: MODEL DOCUMENTATION 

7.1 Petroleum Extraction Model 

Petroleum_Reserves(t) = Petroleum_Reserves(t - dt) + (- extraction) * dt 
INIT Petroleum_Reserves = 10^9 
DOCUMENT: The estimated number of barrels of petroleum under the field is 
initially a billion, or 10^9. 
Units: Barrels 

OUTFLOWS:

extraction = Wells * extraction_per_well

DOCUMENT: Number of barrels of petroleum extracted each year.

Units: Barrels/Year


 Wells(t) = Wells(t - dt) + (drilling_wells - closing_wells) * dt 
INIT Wells = 1 
DOCUMENT: Number of wells on the field extracting petroleum. 
Units: Wells 

INFLOWS:

drilling_wells = Wells * drilling_fraction

DOCUMENT: Number of wells drilled each year.

Units: Wells/Year


OUTFLOWS:

closing_wells = Wells * closing_fraction

DOCUMENT: Number of wells closing each year.

Units: Wells/Year


closing_fraction = NORMAL_CLOSING_FRACTION * effect_of_extraction_on_

closing_fraction

DOCUMENT: The fraction of wells closing each year.

Units: 1/Year


drilling_fraction = NORMAL_DRILLING_FRACTION * effect_of_reserves_on_

drilling_fraction

DOCUMENT: The fraction of wells drilled each year.

Units: 1/Year


extraction_per_well = MAXIMUM_EXTRACTION_PER_WELL * effect_of_

reserves_on_extraction_per_well

DOCUMENT: The amount of petroleum extracted per well each year.

Units: (Barrels/Well)/Year


INITIAL_PETROLEUM_RESERVES = 10^9 
DOCUMENT: The initial amount of petroleum in the field is estimated to be a 
billion, or 10^9. 
Units: Barrels 
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MAXIMUM_EXTRACTION_PER_WELL = 1000000 
DOCUMENT: The amount of petroleum that a well can extract each year at full 
capacity when there is ample petroleum left. 
Units: (Barrels/Well)/Year 

NORMAL_CLOSING_FRACTION = 0.05

DOCUMENT: The normal fraction of wells that close each year.

Units: 1/Year


NORMAL_DRILLING_FRACTION = 0.25

DOCUMENT: The normal fraction of wells drilled each year.

Units: 1/Year


effect_of_extraction_on_closing_fraction =

GRAPH(extraction_per_well/MAXIMUM_EXTRACTION_PER_WELL)

(0.00, 20.0), (0.1, 19.9), (0.2, 19.8), (0.3, 18.8), (0.4, 11.1), (0.5, 4.60), (0.6, 2.30),

(0.7, 1.40), (0.8, 1.05), (0.9, 1.00), (1, 1.00)

DOCUMENT: The effect of the remaining percentage of petroleum reserves on

the closing fraction.

Units: dimensionless


effect_of_reserves_on_drilling_fraction =

GRAPH(Petroleum_Reserves/INITIAL_PETROLEUM_RESERVES)

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.41), (0.5, 0.695), (0.6,

0.84), (0.7, 0.935), (0.8, 0.98), (0.9, 0.995), (1, 1.00)

DOCUMENT: The effect of the remaining percentage of petroleum reserves on

the drilling fraction.

Units: dimensionless


effect_of_reserves_on_extraction_per_well =

GRAPH(Petroleum_Reserves/INITIAL_PETROLEUM_RESERVES)

(0.00, 0.00), (0.05, 0.00), (0.1, 0.00), (0.15, 0.00), (0.2, 0.00), (0.25, 0.00), (0.3,

0.00), (0.35, 0.00), (0.4, 0.00), (0.45, 0.00), (0.5, 0.00), (0.55, 0.00), (0.6, 0.005),

(0.65, 0.045), (0.7, 0.15), (0.75, 0.37), (0.8, 0.725), (0.85, 0.92), (0.9, 0.985),

(0.95, 0.995), (1.00, 1.00)

DOCUMENT: The effect of the remaining percentage of petroleum reserves on

the extraction per well.

Units: dimensionless


7.2 Deer Population Model 

Deer(t) = Deer(t - dt) + (births - deaths) * dt

INIT Deer = 100

DOCUMENT: The population of deer.

Units: Deer


INFLOWS:

births = Deer * BIRTH_FRACTION

DOCUMENT: Number of deer born every year.

Units: Deer/Year
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OUTFLOWS:

deaths = Deer * death_fraction

DOCUMENT: Number of deer dying every year.

Units: Deer/Year


Vegetation(t) = Vegetation(t - dt) + (growth - consumption) * dt 
INIT Vegetation = 10000 
DOCUMENT: Amount of vegetation present in the area. 
Units: Unit of vegetation 

INFLOWS:

growth = Vegetation * GROWTH_PER_UNIT_OF_VEGETATION

DOCUMENT: Rate of regeneration of the vegetation.

Units: Units of vegetation/Year


OUTFLOWS:

consumption = Deer * consumption_per_deer

DOCUMENT: Rate of consumption of the vegetation.

Units: Units of vegetation/Year


BIRTH_FRACTION = 0.5

DOCUMENT: Number of deer born per deer every year.

Units: 1/Year


consumption_per_deer = NORMAL_CONSUMPTION_PER_DEER * effect_of_

vegetation_on_consumption_per_deer

DOCUMENT: Amount of vegetation consumed per deer per year.

Units: (Units of vegetation/Deer)/Year


death_fraction = NORMAL_DEATH_FRACTION * effect_of_vegetation_on_

death_fraction

DOCUMENT: Fraction of deer dying each year.

Units: 1/Year


GROWTH_PER_UNIT_OF_VEGETATION = 0.1 
DOCUMENT: Units of vegetation regenerated per unit of vegetation every year. 
Every year, the amount of vegetation in the area grows by approximately 10 
percent. 
Units: 1/Year 

NORMAL_AMOUNT_OF_VEGETATION = 10000

DOCUMENT: The normal amount of vegetation in the area.

Units: Unit of vegetation


NORMAL_CONSUMPTION_PER_DEER = 1 
DOCUMENT: Number of units of vegetation that a deer consumes per year if 
there is enough vegetation available. 
Units: (Units of vegetation/Deer)/Year 

NORMAL_DEATH_FRACTION = 0.1 
DOCUMENT: Fraction of deer dying per deer every year when there is enough 
vegetation available. 
Units: 1/Year 
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effect_of_vegetation_on_consumption_per_deer =

GRAPH(Vegetation/NORMAL_AMOUNT_OF_VEGETATION)

(0.00, 0.00), (0.1, 0.305), (0.2, 0.545), (0.3, 0.72), (0.4, 0.835), (0.5, 0.905), (0.6,

0.945), (0.7, 0.97), (0.8, 0.985), (0.9, 1.00), (1, 1.00)

DOCUMENT: Effect of the availability of vegetation on consumption per deer.

Units: dimensionless


effect_of_vegetation_on_death_fraction =

GRAPH(Vegetation/NORMAL_AMOUNT_OF_VEGETATION)

(0.00, 10.0), (0.1, 7.15), (0.2, 5.05), (0.3, 3.15), (0.4, 2.15), (0.5, 1.60), (0.6, 1.35),

(0.7, 1.15), (0.8, 1.05), (0.9, 1.00), (1, 1.00)

DOCUMENT: Effect of the availability of vegetation on the deer death fraction.

Units: dimensionless


7.3 Health Deterioration Model 

Health(t) = Health(t - dt) + (- health_deterioration) * dt 
INIT Health = 100 
DOCUMENT: State of Bryant's health. A perfect health is defined to have the 
value of 100, as in 100%. 
Units: units of health. 

OUTFLOWS:

health_deterioration = Hours_Worked_Per_Day * health_deterioration_per_hour_

worked

DOCUMENT: Bryant’s health gets worse as he works more.

Units: units of health/day


Hours_Worked_Per_Day(t) = Hours_Worked_Per_Day(t - dt) + (increase_in_hours -
decrease_in_hours) * dt 
INIT Hours_Worked_Per_Day = 8 
DOCUMENT: Number of hours that Bryant works per day. 
Units: hours per day 

INFLOWS: 
increase_in_hours = Hours_Worked_Per_Day * INCREASE_FRACTION 
DOCUMENT: The number of hours by which Bryant daily increases the number 
of hours he works per day. 
Units: hours per day/day 

OUTFLOWS: 
decrease_in_hours = Hours_Worked_Per_Day * decrease_fraction 
DOCUMENT: The number of hours by which Bryant daily decreases the number 
of hours he works per day. 
Units: hours per day/day 

decrease_fraction = NORMAL_DECREASE_FRACTION * effect_of_health_on_ 
decrease_fraction 
DOCUMENT: The fraction of an hour by which Bryant decreases the number of 
hours he works per day. 
Units: 1/day 
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health_deterioration_per_hour_worked =

NORMAL_HEALTH_DETERIORATION_PER_HOUR_WORKED * effect_

of_health_on_health_deterioration_per_hour_worked

DOCUMENT: The fraction by which Bryant's health deteriorates each day for

every hour he works.

Units: (units of health/hours per day)/day


INCREASE_FRACTION = 0.1

DOCUMENT: The fraction by which Bryant increases the number of hours he

works each day. As Bryant spends more hours working on the project, he likes it

more and becomes addicted to his work, so he spends even more hours working.

Units: 1/day


INITIAL_HEALTH = 100

DOCUMENT: The initial state of Bryant's health. Assume Bryant is initially

perfectly healthy, so his health is at 100%.

Units: units of health


NORMAL_DECREASE_FRACTION = 0.05

DOCUMENT: The fraction by which Bryant decreases the number of hours he

works each day while his health is perfect.

Units: 1/week


NORMAL_HEALTH_DETERIORATION_PER_HOUR_WORKED = 0.15

DOCUMENT: The fraction by which Bryant's health deteriorates with every

hour he works.

Units: (units of health/hours per day)/day


effect_of_health_on_decrease_fraction = GRAPH(Health/INITIAL_HEALTH)

(0.00, 100), (0.1, 100), (0.2, 100), (0.3, 100), (0.4, 50.0), (0.5, 26.0), (0.6, 10.0),

(0.7, 2.00), (0.8, 1.20), (0.9, 1.05), (1, 1.00)

DOCUMENT: The effect of Bryant's health on the "decrease fraction." As his

health deteriorates, Bryant realizes that his has to stop working so many hours

every day, so the "decrease fraction" grows.

Units: dimensionless


effect_of_health_on_health_deterioration_per_hour_worked =

GRAPH(Health/INITIAL_HEALTH)

(0.00, 0.00), (0.1, 0.435), (0.2, 0.645), (0.3, 0.79), (0.4, 0.87), (0.5, 0.915), (0.6,

0.945), (0.7, 0.97), (0.8, 0.985), (0.9, 0.995), (1, 1.00)

DOCUMENT: The effect of Bryant's health on the "health deterioration per

hour." As Bryant's health gets worse, the fraction of his health that deteriorates

for every hour he works becomes smaller.

Units: dimensionless


7.4 Mayan Population Model 

Population(t) = Population(t - dt) + (births - deaths) * dt

INIT Population = 200000

DOCUMENT: The size of the Mayan population.

Units: People
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INFLOWS:

births = Population * BIRTH_FRACTION

DOCUMENT: Number of people born per century.

Units: People/Century


OUTFLOWS:

deaths = Population * death_fraction

DOCUMENT: Number of people dying per century.

Units: People/Century


State_Of_Environment(t) = State_Of_Environment(t - dt) + 
(environment_regeneration - damage_to_environment) * dt 
INIT State_Of_Environment = INITIAL_STATE_OF_ENVIRONMENT 
DOCUMENT: The state of the environment in which the Mayan population 
lives. The initial value is 100, as in 100%. 
Units: Environment units 

INFLOWS:

environment_regeneration = State_Of_Environment/regeneration_time

DOCUMENT: Regeneration of the environment per century.

Units: Environment units/Century


OUTFLOWS:

damage_to_environment = State_Of_Environment * damage_fraction

DOCUMENT: Environment damage per century.

Units: Environment units/Century


BIRTH_FRACTION = 2

DOCUMENT: Number of people born per person per century.

Units: 1/Century


damage_fraction = NORMAL_DAMAGE_FRACTION * effect_of_density_on_

damage_fraction

DOCUMENT: Fraction of the environment that is damaged per century.

Units: 1/Century


death_fraction = NORMAL_DEATH_FRACTION * effect_of_environment_on_

death_fraction

DOCUMENT: Number of people dying per person per century.

Units: 1/Century


density = Population/LAND_AREA

DOCUMENT: Density of the Mayan population.

Units: People/square kilometer


INITIAL_STATE_OF_ENVIRONMENT = 100

DOCUMENT: Initial state of the environment.

Units: Environment units


LAND_AREA = 10000

DOCUMENT: Area on which the Mayan population lived.

Units: square kilometers
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NORMAL_DAMAGE_FRACTION = 1 
DOCUMENT: Fraction of the environment that is damaged per century when 
density is at its initial value. 
Units: 1/Century 

NORMAL_DEATH_FRACTION = 1.82 
DOCUMENT: Number of people dying per person per century when the 
environment has no negative impact on the lifetime. 
Units: 1/Century 

NORMAL_DENSITY = 20 
DOCUMENT: Density of the Mayan population that does not have any 
damaging effect on the environment. 
Units: People/square kilometer 

NORMAL_REGENERATION_TIME = 1 
DOCUMENT: Time necessary for the environment to regenerate itself when no 
substantial damage has been done yet. 
Units: Century 

regeneration_time = NORMAL_REGENERATION_TIME * effect_of_

environment_on_regeneration_time

DOCUMENT: Time necessary for the environment to regenerate itself.

Units: Century


effect_of_density_on_damage_fraction = GRAPH(density/NORMAL_DENSITY)

(0.00, 1.00), (1.00, 1.00), (2.00, 1.00), (3.00, 1.00), (4.00, 1.00), (5.00, 1.00),

(6.00, 1.00), (7.00, 1.00), (8.00, 1.00), (9.00, 1.00), (10.0, 1.00), (11.0, 1.00),

(12.0, 1.00), (13.0, 1.10), (14.0, 1.10), (15.0, 1.10), (16.0, 1.20), (17.0, 1.20),

(18.0, 1.35), (19.0, 1.35), (20.0, 1.60), (21.0, 1.60), (22.0, 1.90), (23.0, 1.90),

(24.0, 2.30), (25.0, 2.80), (26.0, 3.40), (27.0, 4.25), (28.0, 6.25), (29.0, 26.8),

DOCUMENT: Effect of the density as compared to the normal density on the

damage fraction.

Units: dimensionless


effect_of_environment_on_death_fraction =

GRAPH(State_Of_Environment/INITIAL_STATE_OF_ENVIRONMENT)

(0.00, 5.00), (0.1, 2.33), (0.2, 1.33), (0.3, 1.03), (0.4, 1.02), (0.5, 1.00), (0.6, 1.00),

(0.7, 1.00), (0.8, 1.00), (0.9, 1.00), (1, 1.00)

DOCUMENT: Effect of the environment as compared to the initial state of the

environment on the death fraction.

Units: dimensionless


effect_of_environment_on_regeneration_time =

GRAPH(State_Of_Environment/INITIAL_STATE_OF_ENVIRONMENT)

(0.00, 2.00), (0.1, 1.50), (0.2, 1.32), (0.3, 1.18), (0.4, 1.09), (0.5, 1.04), (0.6, 1.01),

(0.7, 1.00), (0.8, 1.00), (0.9, 1.00), (1, 1.00)

DOCUMENT: Effect of the environment as compared to the initial state of the

environment on the time necessary for the environment to regenerate itself.

Units: dimensionless





