Beginner Modeling Exercises

Prepared for the
MIT System Dynamics in Education Project
Under the Supervision of
Prof. Jay W. Forrester

by
Leslie A. Martin
September 5, 1997

Vensim Examples added October 2001

Copyright © 2001 by the Massachusetts Institute of Technology.
Permission granted to distribute for non-commercial educational purposes.

Table of Contents

1. ABSTRACT 5
2. INTRODUCTION 5
3. STOCKS AND FLOWS 6
4. MODELING WITH STELLA 13
4.1 Skunks 13
4.2 LANDFILLS 17
4.3 Fir Trees 21
4.4 BRownies 24
4.5 ENERGY RESOURCES 27
4.6 Homework 29
4.7 Library Books 32
4.8 SAND CASTLES 35
4.9 Distance 38
4.10 Velocity 40
4.11 PinOCCHIO 42
4.12 Cavities 45
4.13 A Bank Account 48
4.14 Nuclear Weapons 51
5. VENSIM EXAMPLES 54

1. Abstract

The goal of this paper is to teach the reader how to distinguish between stocks and flows. A stock is an accumulation that is changed over time by inflows and outflows. The reader will gain intuition about stocks and flows through an extensive list of different examples and will practice modeling simple systems with constant flows.

2. Introduction

What is the difference between a stock and a flow? Stocks are accumulations. Stocks hold the current state of the system: what you would see if you were to take a snapshot of the system. If you take a picture of a bathtub, you can easily see the level of the water. Water accumulates in a bathtub. The accumulated volume of water is a stock. Stocks fully describe the condition of the system at any point in time. Stocks, furthermore, do not change instantaneously: they change gradually over a period of time.

Flows do the changing. The faucet pours water into the bathtub and the drain sucks water out. Flows increase or decrease stocks not just once, but every unit of time. The entire time that the faucet is turned on and the drain unplugged, water will flow in and out. All systems that change through time can be represented by using only stocks and flows.

3. Stocks and Flows

Below are fourteen rows of variables. For each row, identify which variable is a stock and which are the flows that change the stock. Draw a box around the stock. The first row has already been done as an example. The population of skunks is a stock. The size of the skunk population changes with a number of births each year and a number of deaths each year.

velocity	distance	
velocity	acceleration	
sand castles	demolishing	constructing
shrinking	Pinocchio's nose	lengthening
cavities	developing	filling
expenses	income	money in bank account
building	nuclear weapons	disarming

The solution is pictured below. The stocks are in the center, boxed, and the flows are on the outside. Now determine which flows are inflows and which are outflows by drawing arrows into or out of the stocks. The first row has been done as an example. The skunk population is increased by births and decreased by deaths.

The solution is depicted below:

4. Modeling with STELLA

4.1 Skunks

Scenario: Five hundred skunks live in the wooded grassy area near the intersection of two interstate expressways. Every year 100 baby skunks are born. Life on a highway takes its toll, though, and every year 120 skunks die.

Question: How many skunks will live near the highway in 10 years?
? Open a new STELLA file.
? Go down to the model construction level by clicking on the down arrow (∇).
? Place a stock (\square) in the middle of your screen and name it "Skunk Population."
? Place a flow ($\stackrel{\rightharpoonup}{\delta}$) to the left of the "Skunk Population" stock and drag the flow into the stock. Name the flow "births."
? Place a flow in the "Skunk Population" stock and drag the flow to the right. Name the flow "deaths."

Your model will look like the model below:

? To go to the equations mode, toggle the globe in the upper-left-hand corner () so that it becomes X^{2}. Question marks should appear in the stock and flow.
? Double-click on "births" and the dialog box will appear on your screen. Type "100" as the equation for "births."
? Click on the Document button. In the document box, type " 100 baby skunks are born every year."
? On the next line type "UNITS: skunks/year." Click OK.
? Double-click on "deaths" and the dialog box will appear on your screen. Type "120" as the equation for "deaths."
? Click on the Document button. In the document box, type " 120 skunks die every year."
? On the next line type "UNITS: skunks/year." Click OK.
? Double-click on the "Population" stock and the dialog box will appear on your screen. Type " 500 " as the initial skunk population.
? Click on Document. Type "The initial skunk population is 500 skunks."
? On the next line type "UNITS: skunks." Click OK.

To view the equations for the model you have just created, click on the down arrow (∇) above the χ^{2} icon. Then select Equation Prefs under the Edit menu. Once the Equation Prefs dialog box appears on your screen, click on Show Documentation. Click OK. The following equations will appear:
\square Skunk_Population $(\mathrm{t})=$ Skunk_Population $(\mathrm{t}-\mathrm{dt})+($ births - deaths $) * \mathrm{dt}$
INIT Skunk_Population $=500$
DOCUMENT: The initial skunk population is 500 skunks.
UNITS: skunks

客 births $=100$
DOCUMENT: 100 baby skunks are born every year.
UNITS: skunks/year

苋deaths $=120$
DOCUMENT: 120 skunks die every year.
UNITS: skunks/year

You will notice that you typed in the information for everything except the first equation for "Population." Every stock equation is automatically formulated by STELLA when you diagram the flows, so all you need to do is define an initial value.
? Click on the up arrow (\triangle) to return to the model construction level.
? Create a graph by clicking the graph icon $(\underset{\sim}{\sim})$ and placing it onto the workspace. Double-click on the icon.
? Double-click on the graph pad itself to open it. When the dialog box opens, name the graph "Skunk Population." Double-click on "Population" from the Allowable Inputs list to select it to be graphed. Click OK.
? Select Time Specs in the Run menu. When the dialog box appears, select "Years." Set the Range values from 0 to 10 . Click OK.
? To run the graph, either select Run from the Run menu, hold down both open-apple (\%) and "R," or click on the little runner to bring up the run controller window and click on the play button.

You will see the graph replicated below:

One quick glance at the graph will give you the answer to our question: Ten years from now, 300 skunks will populate the grassy area beyond the interstate.

4.2 Landfills

Scenario: The city of Boise, Idaho is building a new landfill. The city council wants to know how large the landfill will be in twenty years so that it can plan ahead and allocate enough space for all of the trash that will be dumped into the landfill. The trash in the landfill can be separated into two categories: the trash that will quickly decompose, like yard leaves, and the trash that will take a long time to decompose, like plastics. The city council predicts that, over the next twenty years, the citizens of Boise will be dumping approximately five thousand gallons of plastics into the landfill every day.

Question: How many gallons of plastics will the Boise landfill contain in twenty years time?
? Dynamite the skunk population model by positioning the dynamite icon () over the stock and flows.
? Place a stock (\square) in the middle of your screen and rename it "Plastics in Landfills."
? Place a flow ($\stackrel{\check{\delta}}{\boldsymbol{\sigma}}$) to the left of the "Plastics in Landfills" stock and drag the flow into the stock. Rename the flow "dumping."

The plastics will not significantly decompose over a period of 20 years, so you do not need to add an outflow to the stock of "Plastics in Landfills." Your model will look like the model below:

The citizens of Boise dump 5,000 gallons of plastics a day into the landfill. Because there are on average 365 days in a year, the citizens of Boise dump 5,000 * 365 gallons of plastics each year.
? Double-click on "dumping" and the dialog box will appear on your screen. Type " $5000 * 365$ " as the equation for "dumping."
? Click on the Document button. In the document box, type "Citizens in Boise will dump 5,000 gallons of plastics into the landfill every day for the 365 days that make up a year."
? On the next line type "UNITS: gallons of plastics/year." Click OK.
? Double-click on the "Plastics in Landfills" stock and the dialog box will appear on your screen. Type " 0 " as the initial skunk population.
? Click on Document. Type "Initially the landfill is empty."
? On the next line type "UNITS: gallons of plastics." Click OK.

To view the equations for the model you have just created, click on the down arrow (∇) above the x^{2} icon. The following equations will appear:
\square Plastics_in_Landfills $(\mathrm{t})=$ Plastics_in_Landfills $(\mathrm{t}-\mathrm{dt})+$ dumping $* \mathrm{dt}$
INIT Plastics_in_Landfills $=0$
DOCUMENT: Initially the landfill is empty
UNITS: gallons of plastics

灰 dumping $=5000 * 365$
DOCUMENT: Citizens in Boise will dump 5,000 gallons of plastics into the landfill every day for the 365 days that make up a year.

UNITS: gallons of plastics/year
? Click on the up arrow (\triangle) to return to the model construction level.
? Double-click on the graph icon (\sim) if the graph pad is no longer in view. Notice that the graph was erased when you used the dynamite to blow up the skunk population model.
? Double-click on the graph pad itself to open it. When the dialog box opens, name the graph "Landfills." Double-click on "Plastics in Landfills" from the Allowable Inputs list to select it to be graphed. Click OK.
? Select Time Specs in the Run menu. "Years" should already be selected. Set the Range values from 0 to 20 . Click OK.
? To run the graph, either select Run from the Run menu, hold down both open-apple (覀) and "R," or click on the little runner to bring up the run controller window and click on the play button.

You will see the graph displayed below:

From the graph you can answer our question by translating 3.65e+07 from scientific notation (by multiplying 3.65 by 10^{7}): in 20 years, the landfill outside of Boise will contain 36 and a half million gallons of plastics.

4.3 Fir Trees

Scenario: Today, approximately five million fir trees stand tall in Hardwood Forest. A lumber company has been cutting down, harvesting, approximately one hundred thousand trees every year. An environmental group, worried that the forest will be entirely destroyed, has been working hard to plant as many new fir trees as possible. They have been able to plant approximately five thousand trees every year.

Question: How many fir trees will there be in Hardwood Forest in thirty years?

Answer: 2 million 150 thousand fir trees

\square Fir_Trees $(\mathrm{t})=$ Fir_Trees $(\mathrm{t}-\mathrm{dt})+($ planting - harvesting $) * \mathrm{dt}$
INIT Fir_Trees $=5 \mathrm{e} 6$
DOCUMENT: The initial number of fir trees is 5 million (or 5,000,000 or 5e6)
UNITS: fir trees

审 planting $=5000$
DOCUMENT: an environmental group plants 5000 trees every year
UNITS: fir trees/year
harvesting $=1 \mathrm{e} 5$
DOCUMENT: a lumber company harvests 100,000 trees every year (or 1e5)
UNITS: fir trees/year

4.4 Brownies

Scenario: It's Saturday and Mathilda is working alone at home on a group project. Mathilda's best friend feels guilty that she's not contributing to the team effort, so she bakes Mathilda an enormous plate of brownies that she brings over with many words of encouragement. Mathilda nibbles on the brownies as she works. She eats a brownie every hour. As Mathilda works on the group project, her stomach works on digesting the brownies. Mathilda digests a brownie every two hours.

Question: Eight hours later, when Mathilda finishes her work on the group project, how many brownies does she have in her stomach?

Answer: 4 brownies

\square Brownies_in_Stomach $(\mathrm{t})=$ Brownies_in_Stomach $(\mathrm{t}-\mathrm{dt})+($ eating - digesting $) * \mathrm{dt}$ INIT Brownies_in_Stomach $=0$

DOCUMENT: Initially Mathilda's stomach is empty.
UNITS: brownies
$\ddot{>}$ eating $=1$
DOCUMENT: Mathilda eats a brownie every hour.
UNITS: brownies/hour

范 digesting $=1 / 2$
DOCUMENT: Mathilda digests 1 brownie every 2 hours. She therefore digests a half a brownie every hour.

UNITS: brownies/hour

4.5 Energy Resources

Scenario: In 1972 the world's known reserves of chromium were about 775 million metric tons, of which about 1.85 million metric tons are milled annually at present. ${ }^{1}$ Make the temporary assumption that the world population is not growing and industrializing, increasing the demand for chromium exponentially, but instead is at some (unrealistic) equilibrium so that the demand for chromium is constant.

Question: At the current rate of consumption, approximately how long will the known reserves last? (Hint: Try running the model several times, increasing or decreasing the time scale, until you find the numbers of years after which the chromium reserves drop to zero.)

[^0]Answer: 420 years
Energy_Resources(t) = Energy_Resources ($\mathrm{t}-\mathrm{dt}$) - consumption * dt
INIT Energy_Resources $=7.75 \mathrm{e} 8$
DOCUMENT: In 1972 the world's known reserves of chromium were about 775 million metric tons.

UNITS: metric tons
consumption $=1.85 \mathrm{e} 6$
DOCUMENT: 1.85 million metric tons are milled annually at present.
UNITS: metric tons/hour

4.6 Homework

Scenario: Mathilda, the ever-studious student, diligently does her homework. Corky, on the other hand, is a slacker. He lets his work build up. Every week he receives seven new assignments. Over the course of the week he completes one or two of the assignments. (On average, he completes one and a half). The semester is twelve weeks long.

Question: How many assignments does Corky have to do at the end of the semester, right before his final exams?

Answer: 66 assignments

Homework $(\mathrm{t})=$ Homework $(\mathrm{t}-\mathrm{dt})+($ assigning - completing $) * \mathrm{dt}$
INIT Homework $=0$
DOCUMENT: Corky begins the year on a clean slate.
UNITS: assignments
\% assigning $=7$
DOCUMENT: Every week Corky receives 7 new assignments.
UNITS: assignments/week
completing $=1.5$
DOCUMENT: Over the course of the week Corky completes one or two of his assignments, so on average he completes one and a half assignments.

UNITS: assignments/week

4.7 Library Books

Scenario: Laughton has a pile of five library books on the floor next to his desk. He loves to read. Every week Laughton returns four of the books that he has read. He also checks out four new books.

Question: How large is Laughton's pile of library books after eight weeks?

Answer: 5 books

Library_Books_Checked_Out (t) = Library_Books_Checked_Out (t - dt) +
(borrowing - returning) $* \mathrm{dt}$
INIT Library_Books_Checked_Out = 5
DOCUMENT: Laughton has a pile of 5 library books on the floor next to his desk.

UNITS: books

学 borrowing = 4
DOCUMENT: Every week Laughton checks out 4 new books.
UNITS: books/week

学 returning $=4$
DOCUMENT: Laughton returns 4 library books every week.
UNITS: books/week

4.8 Sand Castles

Scenario: A beach club in St. Tropez is organized a sand castle contest. At 10 AM, eighty children gathered on the beach to make their sand castles. Unfortunately, at that time the tide was on the rise. Each child was able to build a new sand castle every hour. The incoming tide and the advancing waves demolished fifty sand castles every hour.

Question: How many sand castles were left on the beach at 6 PM? (Hint: you can either run your simulation from 10:00 to 18:00 or from 0 to 8 hours after the beginning of the contest)

Answer: 240 sand castles

\square Sand_Castles $(\mathrm{t})=$ Sand_Castles $(\mathrm{t}-\mathrm{dt})+($ constructing - demolishing $) * \mathrm{dt}$ INIT Sand_Castles $=0$

DOCUMENT: When the children arrive the sandy beach is barren.
UNITS: castles
\Rightarrow constructing $=80$
DOCUMENT: Each of the 80 children builds a new sand castle every hour.
UNITS: castles/hour
\Rightarrow demolishing $=50$
DOCUMENT: The advancing waves demolished 50 sand castles every hour.
UNITS: castles/hour

4.9 Distance

Scenario: Randy is training to run in the Boston Marathon. If he paces himself, he can run eight minute miles. Randy likes to run in the morning, before breakfast. He wakes up at 7 AM , and eats breakfast at 8 AM .

Question: How many miles can Randy run before breakfast? (Hint: you can run the simulation from 7 to 8 hours or for 60 minutes. It does not matter which units you choose, but you must be consistent and use either minutes or hours throughout.)

Answer: 7.5 miles

Distance $(\mathrm{t})=$ Distance $(\mathrm{t}-\mathrm{dt})+$ velocity $* \mathrm{dt}$
INIT Distance $=0$
DOCUMENT: At 7 AM Randy has not run any miles yet.
UNITS: miles
velocity $=1 / 8$
DOCUMENT: Because Randy can run 1 mile in 8 minutes, he can run $1 / 8$ of a mile in one minute.

UNITS: miles/minute

4.10 Velocity

Scenario: A Ferrari is paused at a red light. The light turns green. The driver slams down the accelerator and the sports car springs forward. He keeps his foot tight on the accelerator. The car accelerates at five miles per hour per second.

Question: How fast will the Ferrari be cruising sixteen seconds later?

Answer: 80 miles per hour
Velocity $(\mathrm{t})=$ Velocity $(\mathrm{t}-\mathrm{dt})+\operatorname{acceleration} * \mathrm{dt}$
INIT Distance $=0$
DOCUMENT: At the red light the car is stopped, so its velocity is 0 .
UNITS: miles per hour
acceleration $=5$
DOCUMENT: The car accelerates at 5 miles per hour/second.
UNITS: miles per hour /second

4.11 Pinocchio

Scenario: When Pinocchio lies his nose lengthens by one centimeter. Each time he does a good dead, his nose shrinks five centimeters. Every day, Pinocchio tells an average of 8 lies and performs, on average, one good deed.

Question: If Monday morning Pinocchio's nose is 4 centimeters long, how long will his nose be on Saturday night?

Answer: 22 centimeters

\square Pinocchio's_Nose (t) = Pinocchio's_Nose ($\mathrm{t}-\mathrm{dt}$) + (lengthening - shrinking) * dt
INIT Pinocchio's_Nose $=4$
DOCUMENT: On Monday morning Pinocchio's nose is 4 centimeters long.
UNITS: centimeters

\% lengthening $=8$

DOCUMENT: Pinocchio tells 8 lies each day and his nose lengthens 1 centimeter for each lie.

UNITS: centimeters/day

$\stackrel{>}{\delta}$ shrinking $=5$

DOCUMENT: Pinocchio performs 1 good deed each day and his nose shrinks 5 centimeters for that good deed.
UNITS: centimeters/day

1: Pinocchio's Nose

4.12 Cavities

Scenario: I develop a full-blown cavity every two years. I do not go to see my dentist very often; I get a cavity filled every three years. Because I wait so long the process is often quite painful.

Question: I currently don't have any cavities. How many will I have in 15 years?

Answer: 2 and a half cavities

Cavities $(\mathrm{t})=$ Cavities $(\mathrm{t}-\mathrm{dt})+($ developing - filling $) * \mathrm{dt}$
INIT Cavities $=0$
DOCUMENT: I currently don't have any cavities.
UNITS: cavities
$\%$ developing $=1 / 2$
DOCUMENT: I develop a full-blown cavity every two years.
UNITS: cavities/year
filling $=1 / 3$
DOCUMENT: I get a cavity filled every three years.
UNITS: cavities/year

4.13 A Bank Account

Scenario: Stephanie has $\$ 678.53$ in her bank account. Every week she earns $\$ 120$. Each week $\$ 23.70$ are deducted from her paycheck for social security, Medicare, local, state, and federal taxes. She spends $\$ 7.75$ every week to go out for a movie and approximately $\$ 60$ every three weeks on clothes.

Question: How much money will Stephanie have in her bank account in four months (sixteen weeks from now)?

Answer: 1775.33 dollars
Money_in_Bank_Account $(\mathrm{t})=$ Money_in_Bank_Account ($\mathrm{t}-\mathrm{dt}$) + (income -
expenses) * dt
INIT Money_in_Bank_Account $=678.53$
DOCUMENT: Stephanie has $\$ 678.53$ in her bank account.
UNITS: dollars

学 income = 120-23.7
DOCUMENT: Every week she gets a paycheck for $\$ 120$ minus $\$ 23.70$ in taxes.
UNITS: dollars/week
$\ddot{\sigma}$ expenses $=7.75+60 / 3$
DOCUMENT: She spends $\$ 7.75$ every week on a movie and $\$ 60$ every three weeks on clothes.

UNITS: dollars/week

4.14 Nuclear Weapons

Scenario: In 1990 the fictional country of Euromerica had an arsenal of approximately ten thousand nuclear weapons. Every year, scientists and engineers design and manufacture five hundred new nuclear weapons. Because of an international pressure in favor of disarmament, Euromerica disarms approximately six hundred of its older nuclear weapons each year.

Question: If Euromerica continues at its current rates of building and disarming, how many nuclear weapons will the nuclear arsenal contain in the year 2010?

Answer: 8000 nuclear weapons

\square Nuclear_Weapons $(\mathrm{t})=$ Nuclear_Weapons $(\mathrm{t}-\mathrm{dt})+($ building - disarming $) * \mathrm{dt}$ INIT Nuclear_Weapons $=10000$

DOCUMENT: In 1990 Euromerica has 10,000 nuclear weapons.
UNITS: weapons

客 building $=500$
DOCUMENT: Every year Euromerica builds 500 new nuclear weapons.
UNITS: weapons/year

学 disarming $=600$
DOCUMENT: Every year Euromerica disarms 600 nuclear weapons.
UNITS: weapons/year

Vensim Examples:
 Beginner Modeling Exercises

By Lei Lei and Nathaniel Choge October 2001

Section 4.1: Skunks

Figure 1: Vensim Equivalent of Skunks model

Documentation for Skunks Model:

(1) births $=100$

Units: skunks/Year
100 baby skunks are born every year.
(2) deaths $=120$

Units: skunks/Year
120 skunks die every year.
(3) FINAL TIME $=10$

Units: Year
The final time for the simulation.
(4) INITIAL SKUNK POPULATION $=500$

Units: skunks
The initial skunk population is 500 skunks.
(5) INITIAL TIME $=0$

Units: Year

The initial time for the simulation.
(6) SAVEPER = TIME STEP

Units: Year
The frequency with which output is stored.
(7) Skunk Population= INTEG (births-deaths, INITIAL SKUNK POPULATION) Units: skunks

The skunk population.
(8) TIME STEP $=0.0625$

Units: Year
The time step for the simulation.

Figure 2: Vensim Equivalent of Simulation for Number of Skunks

Section 4.2: Landfills

Figure 3: Vensim Equivalent of Landfills

Documentation for Landfills Model:

(1) dumping $=5000 * 365$

Units: gallons of plastics/Year
Citizens in Boise will dump 5,000 gallons of plastics into the landfill for the 365 days that make up the year.
(2) FINAL TIME $=20$

Units: Year
The final time for the simulation.
(3) INITIAL PLASTICS IN LANDFILLS $=0$

Units: plastics
Initially the landfill is empty.
(4) INITIAL TIME $=0$

Units: Year
The initial time for the simulation.
(5) Plastics in Landfills= INTEG (dumping, INITIAL PLASTICS IN LANDFILLS)

Units: gallons of plastics
Gallons of plastics in the landfill.
(6) SAVEPER = TIME STEP

Units: Year
The frequency with which output is stored.
(7) \quad TIME STEP $=0.0625$

Units: Year
The time step for the simulation.
Graph for Plastics in Landfills

Plastics in Landfills : Current-1 1-1 1-1 gallons of plastics

Figure 4: Vensim Equivalent of Simulation for plastics in landfills

Section 4.3: Fir Trees

Figure 5: Vensim Equivalent of Fir Trees

Documentation for Fir Trees model:

(1) FINAL TIME $=30$

Units: Year
The final time for the simulation.
(2) Fir Trees $=$ INTEG $(+$ planting-harvesting, INITIAL FIR TREES $)$

Units: fir trees
(3) harvesting $=100000$

Units: fir trees/Year
A lumber company harvests 100,000 trees every year.
(4) INITIAL FIR TREES $=5 \mathrm{e}+006$

Units: fir trees
(5) INITIAL TIME $=0$

Units: Year
The initial time for the simulation.
(7) planting $=5000$

Units: fir trees/Year
An environmental group plants 5000 trees every year.
(8) SAVEPER = TIME STEP

Units: Year
The frequency with which output is stored.
(9) TIME STEP $=0.0625$

Units: Year
The time step for the simulation.

Fir Trees : Current \qquad fir trees

Figure 6: Vensim Equivalent of Simulation for Number of Fir Trees

Section 4.4: Brownies

Figure 7: Vensim Equivalent of Brownies Model

Documentation for Brownies Model:

(1) Brownies in Stomach = INTEG (+eating-digesting, INITIAL BROWNIES IN STOMACH)

Units: brownies
Initially Mathilda's stomach is empty.
(2) \quad digesting $=0.5$

Units: brownies/hour
Mathilda digests 1 brownie every 2 hours. She therefore digests a half a brownies every hour.
(3) \quad eating $=1$

Units: brownies/hour
Mathilda eats a brownie every hour.
(4) FINAL TIME $=100$

Units: Month
The final time for the simulation.
(5) INITIAL BROWNIES IN STOMACH $=0$

Units: brownies
(6) INITIAL TIME $=0$

Units: Month
The initial time for the simulation.
(7) SAVEPER = 1

Units: Month
The frequency with which output is stored.
(8) \quad TIME STEP $=0.0625$

Units: Month
The time step for the simulation.

Graph for Brownies in Stomach

Brownies in Stomach : Current —— 1 1 1 1 1 1 —

Figure 8: Vensim Equivalent of Simulation for Number of Brownies

Section 4.5: Energy Resources

INITIAL ENERGY RESOURCES

Figure 9: Vensim Equivalent of Energy Resources Model

Documentation for Energy Resources Model:

(1) consumption $=1.85 \mathrm{e}+006$

Units: metric tons/hour
1.85 million metric tons are milled annually at present.
(2) Energy Resources $=$ INTEG (-consumption, INITIAL ENERGY RESOURCES)

Units: metric tons
In 1972 the world's known reserves of chromium were about 775 million metric tons.
(3) FINAL TIME $=420$

Units: Year
The final time for the simulation.
(4) INITIAL ENERGY RESOURCES $=7.75 \mathrm{e}+008$

Units: metric tons
(5) INITIAL TIME $=0$

Units: Year
The initial time for the simulation.
(6) SAVEPER = TIME STEP

Units: Year
The frequency with which output is stored.
(7) TIME STEP $=0.0625$

Units: Year

The time step for the simulation.

Figure 10: Vensim Equivalent of Simulation of Amount of Energy Resources

Section 4.6: Homework

INITIAL HOMEWORK

Figure 11: Vensim Equivalent of Homework Model

Documentation for Homework Model:

(1) \quad assigning $=7$

Units: assignments/Week
Every week Corky receives 7 new assignments.
(2) completing $=1.5$

Units: assignments/Week
Over the course of the week Corky completes one or two of his assignments, so on average he completes one and a half assignments.
(3) FINAL TIME $=12$

Units: Week
The final time for the simulation.
(4) Homework $=$ INTEG (assigning-completing, INITIAL HOMEWORK)

Units: assignments
Corky begins the year on a clean slate.
(5) INITIAL HOMEWORK $=0$

Units: assignments
(6) INITIAL TIME $=0$

Units: Week
The initial time for the simulation.
(7) SAVEPER = TIME STEP

Units: Week
The frequency with which output is stored.
(8) TIME STEP $=0.0625$

Units: Week
The time step for the simulation.

Homework : Current \qquad

Figure 12: Vensim Equivalent of Simulation for Number Homework

Section 4.7: Library Books

INITIAL LIBRARY BOOKS CHECKED OUT

Figure 13: Vensim Equivalent of Library Books Model

Documentation for Library Books Model:

(1) \quad borrowing $=4$

Units: books/Week
Every week Laughton checks out 4 new books.
(2) FINAL TIME $=8$

Units: Week
The final time for the simulation.
(3) INITIAL TIME $=0$

Units: Week
The initial time for the simulation.
(4) INITIAL LIBRARY BOOKS CHECKED OUT $=5$

Units: books
(5) Library Books Checked Out = INTEG (borrowing-returning, INITIAL LIBRARY BOOKS CHECKED OUT)

Units: books
Laughton has a pile of 5 library books on the floor next to his desk.
(6) returning $=4$

Units: books/Week
Laughton returns 4 library books every week.
(7) SAVEPER = TIME STEP

Units: Week
The frequency with which output is stored.
(8) TIME STEP $=0.0625$

Units: Week
The time step for the simulation.

Library Books Checked Out : Current \qquad books

Figure 14: Vensim Equivalent of Simulation for Number of Library Books

Section 4.8: Sand Castle

Figure 15: Vensim Equivalent of Sand Castle Model

Documentation for Sand Castle Model:

(1) constructing $=80$

Units: castles/Hour
Each of the 80 children builds a new sand castle every hour.
(2) demolishing $=50$

Units: castles/Hour
The advancing waves demolished 50 sand castles every hour.
(3) FINAL TIME $=18$

Units: Hour
The final time for the simulation.
(4) INITIAL SAND CASTLES $=0$

Units: castles
(5) INITIAL TIME $=0$

Units: Hour
The initial time for the simulation.
(6) Sand Castles = INTEG (constructing-demolishing, INITIAL SAND CASTLES)

Units: castles
When the children arrive the sandy beach is barren.
(7) SAVEPER = TIME STEP

Units: Hour
The frequency with which output is stored.
(8) TIME STEP $=0.0625$

Units: Hour
The time step for the simulation.

Figure 16: Vensim Equivalent of Simulation of Number of Sand Castles

Section 4.9: Distance

Figure 17: Distance Model

Documentation for Distance Model:

(1) Distance $=$ INTEG (velocity, INITIAL DISTANCE)

Units: miles
At 7AM Randy has not run any miles yet.
(2) FINAL TIME $=60$

Units: Minute
The final time for the simulation.
(3) INITIAL DISTANCE $=0$

Units: minute
(4) INITIAL TIME $=0$

Units: Minute
The initial time for the simulation.
(5) SAVEPER = TIME STEP

Units: Minute
The frequency with which output is stored.
(6) TIME STEP $=0.0625$

Units: Minute
The time step for the simulation.
(7) velocity $=0.125$

Units: miles/Minute
Because Randy can run 1 mile in 8 minutes, he can run 0.125 of a mile in one minute.

Distance : Current \qquad miles

Figure 18: Vensim Equivalent of Simulation for Distance

Section 4.10: Velocity

Figure 19: Vensim Equivalent of Velocity Model

Documentation for Velocity Model:

(1) acceleration $=5$

Units: miles/hour/Second
The car accelerates at 5 miles per hour/second.
(2) FINAL TIME $=16$

Units: Second
The final time for the simulation.
(3) INITIAL TIME $=0$

Units: Second
The initial time for the simulation.
(4) INITIAL VELOCITY $=0$

Units: miles/hour
(5) SAVEPER = TIME STEP

Units: Second
The frequency with which output is stored.
(6) TIME STEP $=0.0625$

Units: Second
The time step for the simulation.
(7) Velocity $=$ INTEG (acceleration, INITIAL VELOCITY)

Units: miles/hour
At the red light the car is stopped, so its velocity is 0 .

Velocity : Current miles/hour

Figure 20: Vensim Equivalent of Simulation for Velocity

Section 4.11: Pinocchio's Nose

INITIAL PINOCCHIO"S NOSE

Figure 21: Vensim Equivalent of Pinocchio's Nose Model

Documentation for Pinocchio's Nose Model:

(1) FINAL TIME $=6$

Units: Day
The final time for the simulation.
(2) INITIAL PINOCCHIO'S NOSE $=4$

Units: centimeters
(3) INITIAL TIME $=0$

Units: Day
The initial time for the simulation.
(4) \quad lengthening $=8$

Units: centimeters/Day
Pinocchio tells 8 lies each day and his nose lengthens 1 centimeter for each lie.
(5) Pinocchio's Nose $=$ INTEG (lengthening-shrinking, INITIAL PINOCCHIO'S NOSE)

Units: centimeters
On Monday morning Pinocchio's nose is 4 centimeters long.
(6) SAVEPER = TIME STEP

Units: Day
The frequency with which output is stored.
(7) \quad shrinking $=5$

Units: centimeters/Day
Pinocchio performs 1 good deed each day and his nose shrinks 5 centimeters for that good deed.
(8) TIME STEP $=0.0625$

Units: Day
The time step for the simulation.

Graph for Pinocchio's Nose

Pinocchio's Nose : Current centimeters

Figure 22: Vensim Equivalent of Simulation for Length of Pinocchio's Nose

Section 4.12: Cavities

Figure 23: Vensim Equivalent of Cavities Model

Documentation for Cavities Model:

(1) Cavities $=$ INTEG (developing-filling, INITIAL CAVITIES)

Units: cavities
I currently don't have any cavities.
(2) developing $=0.5$

Units: cavities/Year
I develop a full-blown cavity every two years.
(3) \quad filling $=0.333333$

Units: cavities/Year
I get a cavity filled every three years.
(4) FINAL TIME $=15$

Units: Year
The final time for the simulation.
(5) INITIAL CAVITIES $=0$

Units: cavities
(6) INITIAL TIME $=0$

Units: Year
The initial time for the simulation.
(7) SAVEPER = TIME STEP

Units: Year
The frequency with which output is stored.
(8) TIME STEP $=0.0625$

Units: Year
The time step for the simulation.

Graph for Cavities

Cavities: Current cavities

Figure 24: Vensim Equivalent of Simulation for Number of Cavities

Section 4.13: Money in Bank Account

INITIAL MONEY IN BANK ACCOUNT

Figure 25: Vensim Equivalent of Money in Bank Account Model

Documentation for Money in Bank Account Model:

(1) expenses $=7.75+60 / 3$

Units: dollars/Week
She spends $\$.75$ every week on a movie and $\$ 60$ every three weeks on clothes.
(2) FINAL TIME $=16$

Units: Week
The final time for the simulation.
(3) income $=120-23.7$

Units: dollars/Week
Every week she gets a paycheck for $\$ 120$ minus $\$ 23.70$ in taxes.
(4) INITIAL MONEY IN BANK ACCOUNT $=678.53$

Units: dollars
(5) INITIAL TIME $=0$

Units: Week
The initial time for the simulation.
(6) Money in Bank Account $=$ INTEG (+income-expenses, INITIAL MONEY IN BANK ACCOUNT)
Units: dollars
Stephanie has $\$ 678.53$ in her bank account.
(7) SAVEPER = TIME STEP

Units: Week
The frequency with which output is stored.
(8) TIME STEP $=0.0625$

Units: Week
The time step for the simulation.

Money in Bank Account : Current \qquad dollars

Figure 26: Vensim Equivalent of Simulation for Amount of Money in Bank Account

Section 4.14: Nuclear Weapons

INITIAL NUCLEAR WEAPONS

Figure 27: Vensim Equivalent of Nuclear Weapons Model

Documentation for Nuclear Weapons Model:

(1) building $=500$

Units: weapons/Year
Every year Euroamerica builds 500 new nuclear weapons.
(2) \quad disarming $=600$

Units: weapons/Year

Every year Euroamerica disarms 600 nuclear weapons.
(3) FINAL TIME $=2010$

Units: Year
The final time for the simulation.
(4) INITIAL NUCLEAR WEAPONS $=10000$

Units: weapons
(5) INITIAL TIME $=1990$

Units: Year
The initial time for the simulation.
(6) Nuclear Weapons $=$ INTEG (building-disarming, INITIAL NUCLEAR WEAPONS)
Units: weapons
In 1990 Euroamerica has 10,000 nuclear weapons.
(7) SAVEPER = TIME STEP

Units: Year
The frequency with which output is stored.
(8) TIME STEP $=0.0625$

Units: Year
The time step for the simulation.

Nuclear Weapons : Current —— weapons

Figure 28: Vensim Equivalents of Simulation for Number of Nuclear Weapons

[^0]: ${ }^{1}$ Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, and William W. Behrens III, 1972. The Limits to Growth. New York, NY; Universe Books, p. 61.

