15.997 Practice of Finance: Advanced Corporate Risk Management Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Overview	
 Two Alternative Methods for Discounting Cash Flows Risk-Neutral Pricing – an Introduction State Prices The Risk-Neutral Probability Distribution The Forward Price as a Certainty-Equivalent Implementing Risk-Neutral Valuation The Risk-Neutral Distribution in Binomial Trees Random Walk Example Mean Reversion Example Valuation Mechanics – when risk-adjusted works Example #1: Single-Period, Symmetric Risk Example #3: Two-Period, Compounded Risk Valuation Mechanics – when risk adjusted doesn't work Example #2: Single-Period, Non-compounded Risk Turbocharged Valuation Equilibrium Risk Pricing, Arbitrage Pricing & Risk-Neutral Valuation 	2

ustration of the Two Methods							
Table 7.1							
Hejira Corporation	Production	Eorocas	ad Spot P	ricos			
Two Alternative Methods for Valuing On		FUIECasi	eu Spot P	lices			
Method #1: Risk Adjusted Discount Rate Method -	- simultaneous	v adjust for	risk and time	9			
Year	1	2	3	4			
Forecasted Production (000 bbls)	10,000	9,000	8,000	7,000	6,00		
Forecasted Spot Price (\$/bbl) current price \$38	35.00	33.50	32.75	32.38	32.1		
Forecasted Spot Revenue (\$ 000)	350,000	301,500	262,000	226,625	193,12		
Risk-adjusted Discount Rate, ra	10.0%	10.0%	10.0%	10.0%	10.09		
Risk-adjusted Discount Factor	0.9048	0.8187	0.7408	0.6703	0.606		
PV (\$ 000)	316,693	246,847	194,094	151,911	117,13		
Total PV Spot Sales (\$ 000)	1,026,682						
Method #2: Certainty Equivalent Method separa	tely adjust for	risk then for	time				
Forecasted Spot Revenue (\$ 000)	350,000	301,500	262,000	226,625	193,12		
Certainty Equivalence Risk Premium, λ	6.0%	6.0%	6.0%	6.0%	6.0		
Certainty Equivalence Factor	94.2%	88.7%	83.5%	78.7%	74.19		
Certainty Equivalent Revenue	329,618	267,407	218,841	178,270	143,07		
Riskless Discount Rate, r _f	4.0%	4.0%	4.0%	4.0%	4.09		
Riskless Discount Factor	0.9608	0.9231	0.8869	0.8521	0.818		
D)/ (\$ 000)	316,693	246,847	194,094	151,911	117,13		
F V (\$ 000)							

From Lecture Notes on Advanced Corporate Financial Risk Management. Used with permission.

Figures from Lecture Notes on Advanced Corporate Financial Risk Management. Used with permission.

Applying the Same Risk-premium is Wrong
• It is tempting to apply the same risk-adjusted discount rate or risk-
premium to the expected cash flows for each of these derivative
projects. But this would be incorrect:

$$E[CF]e^{-r_a} = (CF_U \times \pi_U)e^{-r_a} = (CF_U \times \pi_U)e^{-\lambda_P} e^{-r_f} \neq V_U$$

$$E[CF]e^{-r_a} = (CF_D \times \pi_D)e^{-r_a} = (CF_D \times \pi_D)e^{-\lambda_P} e^{-r_f} \neq V_D$$
• How do we know this?

Revalue the Project Using "Forward State Prices" Rewrite the valuation of the project. But instead of discounting the whole expected cash flow by the risk-premium, λ , discount the two separate contingent cash flows, CF_U and CF_D , by two different discount factors, φ_U and φ_D : $V_P = \left(CF_U \times \pi_U \times \phi_U + CF_D \times \pi_D \times \phi_D \right) e^{-r_f}$ If this were a single equation, there would be no sense in trying to separate the two cash flows and applying two different discount factors. But, in fact, we can combine that one equation together with the equation for valuing a risk-free cash flow: $B = (\$1 \times \pi_U \times \phi_U + \$1 \times \pi_D \times \phi_D) e^{-r_f}$ This gives us two equations in two unknowns, so we can solve for the two different discount factors, φ_U and φ_D . 12

The Forward State Prices or State Contingent Discount Factors

Solving these two equations gives us:

$$\varphi_U = \left(\frac{V e^{r_f} - CF_D}{CF_U - CF_D}\right) \frac{1}{\pi_U} = 0.866$$

$$\varphi_D = \frac{1 - \pi_U \,\varphi_U}{1 - \pi_U} = 1.134$$

- Note that the discount factor being applied to "up" cash flows is less than 1, while the discount factor being applied to "down" cash flows is greater than 1.
- Cash in the "down" state is like insurance, and we are willing to pay a premium for it! Makes sense.

13

Valuing the Derivatives with these Forward State Prices

$$V_U = (CF_U \times \pi_U \times \phi_U) e^{-r_f} = \$5.42$$
$$V_D = (CF_U \times \pi_U \times \phi_U + CF_D \times \pi_D \times \phi_D) e^{-r_f} = \$4.58$$

Valuing the Derivatives with these Forward State Prices

$$V_{U} = (CF_{U} \times \pi_{U} \times \phi_{U}) e^{-r_{f}} = \$5.42$$
$$V_{D} = (CF_{U} \times \pi_{U} \times \phi_{U} + CF_{D} \times \pi_{D} \times \phi_{D}) e^{-r_{f}} = \$4.58$$

• Now, if we want to, we can back out the risk-premium that works in a classical risk-adjusted discount calculation:
$$\lambda_{U} \text{ solves } V_{U} = (CF_{U} \times \pi_{U}) e^{-\lambda_{U}} e^{-r_{f}} \text{ which implies } \lambda_{U} = 14.4\%$$
$$\lambda_{D} \text{ solves } V_{D} = (CF_{D} \times \pi_{D}) e^{-\lambda_{D}} e^{-r_{f}} \text{ which implies } \lambda_{D} = -12.6\%$$

Forward State Prices vs. a Single Risk-Premium

- The forward state prices are discount factors that are specific to the particular branch or state on the tree of the underlying risk factor, S.
- The forward state prices can be used to value <u>any</u> project with cash flows contingent on S.
- The project risk-premium, λ_p, reflects the particular weighting of "up" and "down" cash flows. It <u>cannot</u> be used to value any project with cash flows contingent on *S*. It only makes sense for projects with a similar weighting of "up" and "down" cash flows.
- But we can use the project risk-premium, λ_P, together with knowledge about the risk structure of S, to derive the forward state prices.

16

15

Illustration: Start with the Original Problem

Illustration: Revise it by substituting new probabilities

Tables from Lecture Notes on Advanced CorporateFinancial Risk Management.Used with permission.

Illustration: Revise it by substituting new probabilities

Financial Risk Management. Used with permission.

Tables from Lecture Notes on Advanced CorporateFinancial Risk Management.Used with permission.

The Risk-Neutral Distribution

- It is the probability distribution which, when combined with an assumption of risk-neutrality, matches the market price.
- It is the product of the true probability distribution and the true forward state prices:

$$\pi_U^* = \pi_U \times \phi_U$$

- The value of any project is the same for a range of true probabilities and true forward state prices. Instead of trying to back out the true forward state prices, we simply back out the product and ignore the decomposition. The product is the risk-neutral distribution.
- In Corporate Risk Management, we often care about true probability distributions and true discount rates, so we will try to decompose the risk-neutral distribution and recover the risk-premium. But we understand the fundamental indeterminacy.

28

Add the Risk Pricing Information

Add to this risk structure a specified risk-premium, λ =5%. This implies a forward price of \$10.20 and a risk-neutral probability of 39%:

$$F_0 = E[S_1]e^{-\lambda} = (\pi_U S_{1,U} + \pi_D S_{1,D})e^{-\lambda} = \$10.20.$$

$$\pi_{U}^{*}$$
 solves $F_{0} = E^{*}[S_{1}] = (\pi_{U}^{*}S_{U} + \pi_{D}^{*}S_{D})$.

33

Create an Alternative Tree Using the Risk-Neutral Distribution

35

Example #3: Two-Period, Compounded Risk • Suppose you have a two-period project with a payoff only at t=2, but still proportional to the underlying risk factor, with proportionality factor q: $CF_{UU} = q S_{UU}$ $CF_{UD} = q S_{UD}$ $CF_{DD} = q S_{DD}$ • The present value is: $PV_0 = E^*[CF_2]e^{r_r^2} = [\pi_U^*(\pi_U^*CF_{UU} + \pi_D^*CF_{UD}) + \pi_D^*(\pi_U^*CF_{UD} + \pi_D^*CF_{DD})]e^{r_r^2}$ $= q [39\%(39\%(17.02) + 61\%(10.96)) + 61\%(39\%(10.96) + 61\%(7.06))]0.961^2 = q (9.61).$

 Note that this is exactly what you would have gotten using the riskadjusted discount rate with a risk-premium of 5%, and compounded for two periods:

$$PV_{0} = E[CF_{2}]e^{r_{a}^{2}} = q\left[\pi_{U}(\pi_{U}CF_{UU} + \pi_{D}CF_{UD}) + \pi_{D}(\pi_{U}CF_{UD} + \pi_{D}CF_{DD})\right]e^{r_{a}^{2}}$$

 $=q\left[50\%(50\%(17.02)+50\%(10.96))+50\%(50\%(17.02)+50\%(10.96))\right]0.914^{2}$

= q (9.60).

 Once again, for a project with a linear payoff, <u>and assuming that risk</u> <u>grows linearly through time</u>, there is no advantage to switching to the risk-neutral distribution.

Risk-Neutral Valuation Exactly Matches Risk-Adjusted Valuation...Sometimes

- When risk grows linearly through time.
- Examples where these conditions do not hold:
 - When is risk not symmetric?
 - Any non-linear payoff structure such as a call option.
 - When does risk not grow linearly through time?
 - When the underlying factor risk does not grow linearly through time e.g., when it follows a mean reverting process instead of a random walk.
 - When the project's contingent payoff is not a constant function of the underlying factor risk – e.g., when projects are developed or other triggers switch the contingent payoff.
- In these cases
 - The risk-adjusted methodology breaks down or becomes impossibly cumbersome.
 - The risk-neutral methodology is easily applied.

