Value of Flexibility

Dr. Richard de Neufville

Professor of Engineering Systems and Civil and Environmental Engineering Massachusetts Institute of Technology

Value of Flexibility

an introduction using a spreadsheet analysis of a multi-story parking garage

Developed from

- "Valuing Options by Spreadsheet: Parking Garage Case Example,"
 - **ASCE J. of Infrastructure Systems, 2006**
 - R. de Neufville, S. Scholtes, and T. Wang

Intended "Take-Aways"

- Design for fixed objective (mission or specifications) is engineering base case
- Recognizing variability => different design (because of system non-linearities)
- Recognizing flexibility => even better design (it avoids costs, expands only as needed)

Value at Risk and Gain

 Value at Risk and Gain (VARG) recognizes fundamental reality: value of any design can only be known probabilistically

- Because of inevitable uncertainty in
 - Future demands on system
 - > Future performance of technology
 - > Many other market, political factors

Value at Risk and Gain Definition

- Value at Risk definition:
 - A loss that will not be exceeded at some specified confidence level
 - * "We are p percent certain that we will not lose more than V dollars for this project."
- Value at Gain similar on the upside

 VARG easy to see on cumulative probability distribution (see next figure)

 Look at distribution of NPV of designs A, B: → 90% VARisk for NPVA,B are -\$91, \$102
 → 20% VAGain for NPVA is around \$210

Notes

 Cumulative distribution function (CDF) shows the probability that the value of a variable is < or = to quantity on x axis

- VARG can be found on the CDF curve:
 - > 90% VARisk => 10% probability the value is less or equal
 - > NPV corresponding to the 10% CDF is 90% VARisk
 - > NPV for 90% CDF is 10% Value at Gain

VAR and Flexibility

- VAR is a common financial concept
- It stresses downside losses, risks
- However, designers also need to look at upside potential: "Value of Gain"

- Flexible design provides value by both:
 - > Decreasing downside risk
 - Increasing upside potential
 - See next figure

Sources of value for flexibility

Cut downside ; Expand Upside

Excel Analysis Sequence to illustrate value of flexibility

1: Examine situation without flexibility + This is Base case design

2: Introduce variability (simulation) => a different design (in general)

3: Introduce flexibility => a even different and better design

Parking Garage Case

- Garage in area where population expands
- Actual demand is necessarily uncertain

- Design Opportunity: Stronger structure

 enables future addition of floor(s) (flexibility)
 Requires extra features (bigger columns, etc)
 May cost less !!! Because can build smaller
- Design issue: is flexibility worthwhile?

Parking Garage Case details

Demand

- At start is for 750 spaces
- → Over next 10 years is expected to rise exponentially by another 750 spaces
- After year 10 may be 250 more spaces
- → could be 50% off the projections, either way;
- Annual volatility for growth is 10%
- Average annual revenue/space used = \$10,000
- The discount rate is taken to be 12%

Parking Garage details (Cont)

• Costs

- Annual operating costs (staff, cleaning, etc.) = \$2,000 /year/space available (note: spaces used is often < spaces available)
- Annual lease of the land = \$3.6 Million

Site can accommodate 200 cars per level

Step 1: Set up base case

Demand growth as predicted, no variability

Year	0	1	2	3	11	19	20
Demand		750	893	1,015		1,688	1,696
Capacity		1,200	1,200	1,200		1,200	1,200
Revenue		\$7,500,000	\$8,930,000	\$10,150,000	$\langle \langle \rangle$	\$12,000,000	\$12,000,000
Recurring Costs							
Operating cost		\$2,400,000	\$2,400,000	\$2,400,000		\$2,400,000	\$2,400,000
Land leasing cost	\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000		\$3,600,000	\$3,600,000
Cash flow		\$1,500,000	\$2,930,000	\$4,150,000		\$6,000,000	\$6,000,000
Discounted Cash Flow		\$1,339,286	\$2,335,778	\$2,953,888		\$696,641	\$622,001
Present value of cash flow	\$32,574,736				, ,		
Capacity costs for up to two levels	\$6,400,000						
Capacity costs for levels above 2	\$16,336,320						
Net present value	\$6,238,416						

Optimal design for base case (no uncertainty) is 6 floors

Step 2: Simulate uncertainty

NPV Cumulative Distributions

Compare Actual (5 FI) with unrealistic fixed 6 FI design

Recognizing uncertainty => different design: 5 floors

Step 3: Introduce flexibility into design (expand when needed)

Year	0	1	2	3	11	19	20
Demand		820	924	1,044		1,519	1,647
Capacity		800	800	1,200		1,600	1,600
Decision on expansion			expand				
Extra capacity			400				
Revenue		\$8,000,000	\$8,000,000	\$10,440,000	$\langle \rangle$	\$15,190,000	\$16,000,000
Recurring Costs						١	
Operating cost		\$1,600,000	\$1,600,000	\$2,400,000		\$3,200,000	\$3,200,000
Land leasing cost	\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000		\$3,600,000	\$3,600,000
Expansion cost			\$8,944,320			/	
Cash flow		\$2,800,000	-\$6,144,320	\$4,440,000		\$8,390,000	\$9,200,000
Discounted Cash Flow		\$2,500,000	-\$4,898,214	\$3,160,304		\$974,136	\$953,734
Present value of cash flow	\$30,270,287						
Capacity cost for up to two levels	\$6,400,000						
Capacity costs for levels above 2	\$7,392,000						
Price for the option	\$689,600						
Net present value	\$12.878.287						

Including Flexibility => Another, better design:

4 FI with stronger structure enabling expansion

Summary of design results from different perspectives

Perspective	Simulation	Option Embedded	Design	Estimated Expected NPV
Deterministic	No	No	6 levels	\$6,238,416
Recognizing Uncertainty	Yes	No	5 levels	\$3,536,474
Incorporating Flexibilty	Yes	Yes	4 levels with strengthened structure	\$10,517,140

Why is the optimal design much better when we design with flexibility?

Sources of value for flexibility:

Sources of value for flexibility:

2) Maximize potential for upside gain

Comparison of designs with and without flexibility

Design	Design with Flexibility Thinking	Design without Flexibility thinking	Comparison
	(4 levels, strengthened structure)	(5 levels)	
Initial Investment	\$18,081,600	\$21,651,200	Better with options
Expected NPV	\$10,517,140	\$3,536,474	Better with options
Minimum Value	-\$13,138,168	-\$18,024,062	Better with options
Maximum Value	\$29,790,838	\$8,316,602	Better with options

Wow! Everything is better! How did it happen? Root cause: change the framing of design problem From: focus on a (mythical) forecast or set of specs To: managing (realistic) uncertainties by flexibility

Summary

- Flexibility Adds great value
- Sources of value for flexibility
 Cut downside risk; Expand upside potential
- VARG chart is a neat way to represent the sources of value for flexibility
- Spreadsheet with simulation is a powerful tool for estimating value of flexibility