Accessibility (continued) \& Basics of Travel Demand
 Day 6
 11.953

Content

- Quick Review of Major Concepts from Last Week Accessibility measures via Gravity Model and Utility-based Model
- Conclusions from Accessibility Lecture
- "Composite Measures," Deciding on a "Best Measure", Accessibility as raison' d'etre?
- Travel Demand
- Basic Characteristics
- Primary Drivers
- Influencing Factors
- International Comparisons
- Implications for the Future...
- Assignment I
- Other Course Logistic Items

Gravity-based Measures

- Theoretical origins in physics,
- Improvement over distance-based measures, partly because they attempt to better reflect travel behavior realities through their functional form, generally:

$$
A_{i}=\sum_{j} W_{j} f\left(c_{i j}, \beta\right)
$$

- where:
- W_{j} represents the opportunities available in a given zone j
$-f\left(c_{i j}, \beta\right)=\exp \left(-\beta c_{i j}\right)=$ impedance between zones i and j;
- $c_{i j}$ represents the travel cost/distance between zones i and j; and
- β is a travel cost sensitivity parameter.
- generally enters as a negative exponential function
- the accessibility measure clearly is highly sensitive to this parameter
- Should come from empirical analysis

Utility-Based Accessibility: the Logit Model

Example: Car or Bus?

- Potential Influencing factors (variables)

$$
P_{n}(i)=\frac{e^{\mu V_{i n}}}{\sum_{j=1}^{j} e^{\mu V V_{j n}}}
$$

- In-vehicle travel time
- Out-of-vehicle travel time
- Traveler income
- Age
- Gender
- Etc.

Normally, Results used to MAKE PREDICTIONS about choices in some future (or alternative)setting

"Utility-based" Measures

- Theoretically appealing
- Basis in behavioral theory and welfare economics
- Not immediately and easily convertible into meaningful and understandable units
- Convertible into currency, time, but cumbersome
- Assumes utility linear with respect to income - Nonpresence of income effect
- Still travel-biased measures
- Cannot immediately account for non trip-based accessibility (e.g., not traveling; trip-chaining)

"Composite" or "Activity-based" Approaches

- Essentially merging person-based (timespace) with utility-based
- Aims to account for people's activities throughout the day.
- Directly linked to "activity-based" travel research
- Reflect activity re-scheduling, work-at-home possibilities, etc.
- Data and computationally intensive

Dong et al, 2005.

Accessibility: Indicator or Variable?

- Examples here have shown accessibility as Indicator
- US Cities accessibility
- Neighborhood variation (Limanond and Niemeier, 2003)

Total User Benefits (Martinez and Araya, 2000)

- Accessibility also used as variable (input)
- As determinant of some behavior or activity, influencing, e.g., residentia Aso, mode choice, vehicle ownership, etc.
- Household's worker(s) commute time(s) influencing residential choice
- distance to bus stops;
- "neighborhood accessibility";
- "transit accessibility";
- number of jobs within certain driving distance;
- distance to CBD;
- employment density within certain radii;
- number of establishments within various radii of home
- even population density or share of commercial space reflect inherent relative nearness of people, stores, etc.
- And, of course, in combination: e.g., in integrated LUT models

"Best" Measure?

- No universally-agreed upon criteria
- An "ideal" accessibility measure should reflect:
- Different preferences among people,
- Scarcity of people's time and money,
- Range of relevant travel ("impedance") characteristics - safety, convenience, comfort, aesthetics, etc.;
- Range of destination ("opportunity") characteristics:
- safety, convenience, aesthetics, diversity, etc.
- Relevant traveler characteristics
- vehicle availability, age, disability status, etc.
- And be "operational," interpretable, easily communicated.
$>$ The composite, activity-based approach approaches the theoretical ideal.

See, e.g.: Ramming, 1994; Bhat et al, 2000; Handy and Clifton, 2001; Geurs and van Wee, 2004

Accessibility as LUT raison d'etre?

- The mobility-for-accessibility perspective implies a largely utilitarian perspective
- we travel to derive accessibility (e.g., "travel is a derived demand")
- But, travel is not always a "means" to an "end,"
- "travel liking" (due to adventure, variety, independence desires, etc.) and not just for leisure trips, but for routine trips and not just for auto use (see Ory and Mokhtarian, 2005)
- Extra travel as a means of "information gain" (i.e., better information on products, space, etc.) (Arentze and Timmermans, 2005)
- Travel's role in social class formation
- E.g., Vasconcellos (1997) details the role of the car in the "making of the middle class."

Basics of Mobility Demand

Relevant Basic Characteristics

- Purposes:
- Work, Shopping, Social, Recreational, Business, School, Others
- Origin:
- e.g., Home-based work, Home-based school, etc. nonhome-based shopping, etc.
- Stage:
- e.g., Stage 1, 2, etc
- Mode:
- car, bus, rail, etc.
- Time of Day:
- e.g., AM-Peak, Off-peak, etc.
- Tour:
- combination of trips taken between "anchors" (activity-based modeling); multiple activities in a single tour = "trip chaining"
- Distance, Time, other?

Sources of Data

- Fundamental source
- Household Origin-Destination Survey
- Should be calculated for a given Metropolitan Area
- National-level Surveys
- E.g., Censuses
- In US: NPTS: 1969, 1977, 1983, 1990, 1995, 2001
(NHTS)
- 2001 NHTS: 26,000 households, national-level, 24hour "travel day" diary, plus 28-day "Travel Period" for long-distance travel (see nhts.ornl.gov)

Range of "Developing World" Cities

Image removed for copyright purposes.
See Figure 9 in "mobility 2001." World Business Council for Sustainable Development, 2001, p. 18.
http://www.wbcsd.org/web/projects/mobility/english_overview.pdf

Travel Demand: Relevant Personal

 Choices
- Activity choices

- result in the number of tours and trips made by a person for a certain purpose
- Destination choices
- Mode choices
- car, train, bus, tram, metro, etc.
- Time-of-day choices
- Route choices

Why do we Travel: Trip Purposes?

Major Socio-Economic and Demographic Drivers

- Household Income
- Car ownership
- although elasticities different at different income levels: e.g., S-curve
- Longer and more trips
- Higher demand for speed
- higher value of time

National Motorization Rate Where's the S-Curve?

Figure removed for copyright purposes.
See Willoughby, Christopher. "Managing Motorization."
World Bank Report TWU-42, April 2000, p. 8.
http://www.worldbank.org/html/fpd/transport/publicat/twu_42.pdf
Autos and Motorized Two-Wheelers in Chennai, India (1993)

Source: RITES, 1995

Income and Mode Share - São Paulo

Source: Companhia do Metropolitano de São Paulo, 1999.

Income, Motorization Rate \& Mode Share - Santiago

Source: SECTRA, 1991.

Source: Updated data based on Schafer (1998).
Figure by MIT OCW.

But, be careful with National to Global Level Averages...

