
Recursive Structures and Processes


Curran Kelleher


August 24, 2007




Chapter 1 

Recursive Structures and 
Processes 

“Every computer program is a model, hatched in the mind, of a real or men
tal process. These processes, arising from human experience and thought, 
are huge in number, intricate in detail, and at any time only partially un
derstood. They are modeled to our permanent satisfaction rarely by our com
puter programs. Thus even though our programs are carefully handcrafted 
discrete collections of symbols, mosaics of interlocking functions, they con
tinually evolve: we change them as our perception of the model deepens, 
enlarges, generalizes until the model ultimately attains a metastable place 
within still another model with which we struggle.” - Alan J. Perlis 

1.1 Computer Programming 

The above quote is from the forward to the book Structure and Interpre
tation of Computer Programs (SICP) by Harold Abelson and Gerald Jay 
Sussman. This book has become a highly revered text in the field of com
puter science. Alan Perlis sums up quite nicely the nature of the beast: 
computer programming is amazing, but we can never achieve the perfection 
that we instinctively seek. 

As Perlis says, computer programs are “mosaics of interlocking func
tions.” Functions can call other functions, and also themselves. When a 
function calls itself, it is called recursive. The nature of programming is 
itself recursive. Programming languages are defined by grammars which are 
recursive, which is why programming has infinite possibilities. On a higher 
level, the programmer is always seeking to abstract and generalize essential 

1




pieces, so that they can be re-used in different contexts instead of re-written. 
The programmer tries to repeat this process on the new code (recursion), 
always attempting to find the most elegant solution to the problem at hand. 
Eventually the program arrives at a “metastable place within still another 
model with which we struggle.” If and when in the future that model it
self is transcended, the new model will be inside yet a higher meta-model 
(recursion), and so on. The higher up this pyramid of models, the more 
perfect the program seems. However, this pyramid has no end. This is why 
perfection is impossible. 

1.2 Examples 

We will learn about recursion by example, using the Java programming 
language. These examples are intended to be investigated by interested 
people, and often in their construction efficiency has been sacrificed for 
clarity. You will get a sense of how they work, but you will probably not 
fully grok them unless you rewrite them yourself. (grok: to understand 
something so well that it is fully absorbed into oneself) Nothing is fully 
grokked unless you do it yourself, so I encourage you to re-implement these 
examples. Make them better, faster, interactive, more interesting, more 
general, more beautiful, and share your discoveries with the world. 

Computer programming is complex, no doubt, and if you are unfamiliar 
with programming you may initially feel overwhelmed by these examples. 
The purpose of these examples is to teach you about recursion, so the most 
important thing to keep in mind is not the details of each example, but 
rather the common theme of all of them - recursion. 

1.2.1 Factorial! 

We will begin with the example of the factorial, denoted “!”. 

3! = 3 ∗ 2 ∗ 1 

5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 

X! = X ∗ (X − 1) ∗ (X − 2) ∗ (X − 3) ∗ ... ∗ 3 ∗ 2 ∗ 1 

0! = 1 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

So how can we compute this!? Here is a recursive function that does it: 
n! = (n − 1)! for n > 1, and n! = 1 for n ≤ 1. Here is that same function 
coded in Java, with a main method that calls it with the numbers 0 through 
10, printing the output to the console: 

2 



Consider the case that the factorial function were defined only as return n * factorial(n-1),

then the function would call itself infinitely and never return. This is infinite

recursion, It must “bottom out” in order to do anything. This is true for all

recursive functions. In this case, the function bottoms out when n is n ≤ 1

1 - it returns 1.


When this program is executed, we get the following output. 

factorial(0) = 1

factorial(1) = 1

factorial(2) = 2

factorial(3) = 6

factorial(4) = 24

factorial(5) = 120

factorial(6) = 720

factorial(7) = 5040

factorial(8) = 40320

factorial(9) = 362880

factorial(10) = 3628800


1.2.2 Fibonacci Numbers 

The Fibonacci sequence can be generated by a recursive function very similar 
to the recursive factorial function. The only difference is the rule, which 
for the Fibonacci sequence is f(n) = f(n − 1) + f(n − 2) for n > 1, and 
f(n) = 1 for n ≤ 1. This kind of recursive definition appears frequently in 
mathematics, and is also called a recurrence relation. 

3




The output of this program is the Fibonacci sequence: 

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(2) = 2

fibonacci(3) = 3

fibonacci(4) = 5

fibonacci(5) = 8

fibonacci(6) = 13

fibonacci(7) = 21

fibonacci(8) = 34

fibonacci(9) = 55

fibonacci(10) = 89


Do you find is curious that two things that on the surface seem vastly 
different are in fact almost the same? 

1.2.3 A Tree Fractal 

Now we’ll begin to generate pictures using recursion. 
This how fractals are generated. The program de
fines a recursive process, and the resulting tree is a 
recursive structure. Curiously, such recursive struc
tures and processes are found everywhere in nature. 

This program grows a tree recursively, by adding 
two branches to the end of the current branch until it 
bottoms out. Bottoming out happens when the tree 
has branched a certain number of times. The size 
of the two new branches relative to the current one is determined by the 
sizeFactor variable. The angle at which the two new branches will branch 
out relative to the current one is determined by the angleFactor variable. 
The height of the first tree is determined by trunkHeight, and the number 
of levels of recursion (the number of times the tree branches into new trees 
begore it bottoms out) is determined by depth. 

4




First a bit of code explaination. An open source Java visualization library 
called JyVis provides the drawing API (Application Programming Interface) 
that these examples use. This API provides the DrawingPanel and Line 
classes. Lines and other objects can be added to a DrawingPanel using 
the add method. The method showInFrame in DrawingPanel creates and 
displays a full-screen window on the screen. This library is used instead of 
directly using Java’s graphics API so that the code focuses mainly on the 
algorithms, and is not cluttered with the peripheral details of graphics and 
user interface code. The important part of the code to note is the recursion: 
if the maximum depth has not been reached, then branch to the left and 
branch to the right, passing [the current depth]-1 as the new depth (so it 
will eventually bottom out). 

Branching structure (like in this tree) exists in most plants, meaning 
that a recursive algorithm is executing inside plants as they are growing. 
Aristid Lindenmayer noticed this, and developed the notion of a L-system 
or Lindenmayer system, which can algorithmically generate virtual plants 
and other fractal shapes. Brian Goodwin explores somewhat how these 
recursive branching algorithms actually work at the molecular level in plants 
and other organisms in his book “How the Leopard Changed Its Spots.” 

How many branches are there for a given depth? 

1.2.4 The Koch Curve 

5




The Koch Curve (also called Koch Snowflake, or Koch 
Star) first appeared in a paper by Swedish mathemati
cian Helge von Koch. The Koch Snowflake has finite 
area but infinite perimiter. Coastlines exhibit a similar property. If ran
domness is introduced to the generation of the koch curve, the curves that 
are generated resemble coastlines or the cracks in rocks or pavement. When 
this randomized Koch curve is generalized into 3 dimensions, fractal surfaces 
are formed that resemble real mountains. 

To generate the Koch curve, start with a line. Divide that line into 3 
segments, and change the middle segment into an equilateral triangle with 
no bottom. This is the rule. After one iteration of the rule we are left with 4 
line segments. Now apply this rule to each of the four line segments, which 
results in 16 line segments. This is the second iteration of the rule. Apply 
the rule to those 16 line segments, this is the third iteration of the rule. 
The Koch Curve is what results after iterating the rule an infinite number 
of times. 

The Koch Curve is a purely theoretical object, because it’s definition 
never bottoms out. Here is a program which approximates the Koch Curve 
by iterating the rule 7 times: 

6




Notice the essential part: if the maximum depth has not been reached, then 
recurse four times - once for each new line segment. Only when the recursion 
bottoms out is a line drawn. 

1.2.5 The Koch Curve as a Lindenmeyer System 

The Koch Snowflake can also be described by a Lindenmeyer System (L-
System). L-Systems create fractals by re-writing an initial string (by replac
ing certain characters with certain strings) many times, then interpreting the 
resulting string graphically. An L-System consists of an initial string, re
placement rules (the grammar), and an interpretation of characters whereby 
each character changes the rotation or position of the “turtle” and/or draws 
something (or does nothing). 

For example, here is an L-System which creates the Koch Curve: 

• Initial string: “F” 

Grammar: “F” “F+F–F+F” • → 

• Interpretation: 

7 



–	 “F”: move the turtle foreward one unit (with it’s current rotation) 
and draw a line from the previous position to the current position. 

–	 “+”: increase the rotation of the turtle by π/3 

–	 “-”: decrease the rotation of the turtle by π/3 

Here is Java code which implements this L-System, and interates it 
(printing the string) when you click on the screen: 

This is the program output after 2 clicks: 

F 
F+F--F+F 
F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F 

8 



1.2.6 The Sierpinski Triangle 

The Sierpinski Triangle (or Sierpinski Gasket) was described by Wac�l+aw 
Sierpiński in 1915. To get the Sierpinski Triangle, divide a triangle into three 
smaller triangles using the midpoints between the vertices of the original 
triangle, and repeat this rule to the resulting triangles ad infinitum. Here is 
Java code which implements this method of construction: 

9




1.2.7 Iterated Function Systems 

Iterated Function Systems (IFS) take a single point and move it around re
peatedly, plotting a point on the screen for each move. The point is moved 
according to a mapping function, which is chosen probabalistically from 
several possible mapping functions. The Sierpinski Triangle and Fern are 
notable IFS examples. Electric Sheep, the famous evolving fractal screen 
saver developed by Scott Draves, uses an IFS with non-linear mapping func
tions (with some other fancy tricks) to generate it’s beautiful fractal images. 

The Sierpinski Triangle 

The Sierpinski Triangle emerges from an extremely simple IFS, often called 
the Chaos Game. In the Chaos Game, there are three points - vertices of a 
triangle. An initial point is chosen (it could be any point) and plotted on 
the screen. Then one of the three vertices is chosen at random, the point is 
moved halfway between it’s current position and the chosen vertex, and it 
is plotted. This process is repeated indefinitely, and the Sierpinski Triangle 
emerges. Here is Java code for the Chaos Game: 

Fern 

The fern IFS is a system of four mapping functions. Each of these functions 
is a mapping from the outermost rectangle to another, smaller rectangle. 
The system is comprised of the following four functions, which map from 
any point inside the outermost black rectangle... 

1. to a point on the green part of the stem (1% of the time) 

10 



Figure 1.1: The rectangles used in the coordinate transformations (approx
imately), and the image generated by our program. 

2. to a point in the red rectangle, the lowest left branch (7% of the time) 

3. to a point in the dark blue rectangle, the lowest right branch (7% of 
the time) 

4. to a point in the light blue rectangle, which spirals everything upwards 
and smaller (85% of the time) 

Here is Java code which implements this IFS: 

11




Is this algorithm recursive? The code itself is not recursive, it is just 
repetitive. However, the mappings are recursive, because they are applied 
to themselves eventually. The filling in of the fractal object happens because 
of the randomness introduced by selecting probabalistically which of the four 
mappings to apply. 

1.2.8 The Mandelbrot Set 

The Mandelbrot Set is probably the most famous fractal of all. It is defined 
by the equation z = z2 + c, where c is the starting point in the complex 
plane, and z is initially zero. This function is iterated many times. If z 
eventually (after many iterations) “escapes” the circle (of radius 2 centered 
at the origin), then the initial point, c, is not in the Mandelbrot set, and 
that point gets assigned a color based on the number of iterations it took 
for z to excape. If z never escapes the circle, then it is in the Mandelbrot 

12




Figure 1.2: The image generated by our Mandelbrot program. Black points 
are in the Mandelbrot set. The other points are colored based on the number 
of iterations it took for z to escape the circle of radius 2 centered at the origin. 

set, and is colored black. We assume that if z is still inside the circle after 
maxIterations iterations, then it will never escape (so c is in the set). This 
assumption is not always valid, but we must make it to avoid infinite looping. 

13




1.3 Recursion is Everywhere 

Recursion is all around us. It is in our computers, in our cells, in the plants 
we eat, in our brain, in the land we walk on, in Gödel’s incompleteness 
theorem, in Escher’s art, and in Bach’s music. 

14 



MIT OpenCourseWare
http://ocw.mit.edu
 
 
 
Gödel, Escher, Bach: A Mental Space Odyssey
Summer 2007
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
 

http://ocw.mit.edu
http://ocw.mit.edu/terms



