Probability:

Random Isn't So Random

Vina Nguyen
HSSP - June 29, 2008

Why study probability?

- To model the uncertain
- To make decisions under uncertainty
- To understand statistical studies
- To make intelligent guesses

So...what is probability?

- Frequency probability
- How often a result comes up if an experiment is repeated again and again
- Bayesian probability
- Measure of belief in some unknown event given the evidence

Welcome!

- About me
- About you
- About this class
- For beginners
- Basic concepts in probability
- Format: lecture, activity, class problems
- Ask questions!

Why study probability?

- What's the weather like tomorrow?
- What are the chances of a drug working?
- What kind of customer will buy my product?
- Should I buy a lottery ticket? Two?
- Is it a boy or girl?

So...what is probability?

- Frequency probability

So...what is probability?

- Frequency probability

Image courtesy of MIT OpenCourseWare.

So...what is probability?

- Frequency probability

Image courtesy of MIT OpenCourseWare.

Basic Set Theory

- Set: collection of objects
- Example: all the outcomes of a die
- $\mathrm{S}=\{1,2,3,4,5,6\}$
- Element: object in a set
- 1 is an element of S
- Unique

So...what is probability?

- Frequency probability

Image courtesy of MIT OpenCourseWare.

What's the chance of flipping heads?

- Experiment:
- Flip a coin a large number of times
- Observe the percent of heads after each time
- Questions
- What happens initially?
- What happens after a while?

Basic Set Theory

- Empty set Ø: no elements

Basic Set Theory

- Empty set \varnothing : no elements
- Set with an infinite \# of elements
- Set of integers: $\mathrm{G}=\{-1,0,1,2, \ldots\}$

Basic Set Theory

- Empty set Ø: no elements $\quad \therefore$
- Set with an infinite \# of elements
- Set of integers: $G=\{-1,0,1,2, \ldots\}$
- Subset H: if every element of H is in G
- $H=\{1,2\}$ is a subset of G
- Universal set Ω : contains all elements

Set Operations

- Complement of S
- all elements in Ω not in S
- Sc

- Union of sets S, T
- All elements in S or T (or both)
- SUT
- Intersection of sets S,T
- All elements in both S and T
- $\mathrm{S} \cap \mathrm{T}$

Basic Set Theory

- Empty set \varnothing : no elements $\quad \therefore$,
- Set with an infinite \# of elements
- Set of integers: $G=\{-1,0,1,2, \ldots\}$
- Subset H: if every element of H is in G
- $H=\{1,2\}$ is a subset of G

Basic Set Theory

Exercises

Probability Models

- Sample space: what are all the possible outcomes?
- Cannot overlap
- Must be exhaustive
- Events: subsets of sample space
- Probabilities: how likely events are

Model rolling a die

- Sample space?
- Events?
- Probabilities?

What about two dice?

How do we represent sample space?

- Outcomes of rolling two dice

Model rolling a die

- Sample space?
- Events?
- Probabilities?

How do we represent sample space?

- Outcomes of rolling two dice

MIT OpenCourseWare
http://ocw.mit.edu

Probability: Random Isn't So Random

Summer 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

