Permutations, Combinations, Partitions

Vina Nguyen
HSSP - July 20, 2008

Review of last class

- What is Bayes' rule?

Review of last class

What is the total probability theorem?

Review of last class

What does "A is independent from B" mean?

Review of last class

How do we test for independence?

Last class catchup

- If we have probability, and conditional probability...
- We can have independence, and conditional independence too

Conditional Independence

- Definition:

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$ given C, A and B are independent

- Another way to write this:

$$
P(A \mid B \cap C)=P(A \mid C)
$$

Example: Biased Coin Toss

- We have two coins: blue and red
- We choose one of the coins at random (probability = 1/2), and toss it twice
- Tosses are independent from each other given a coin
- The blue coin lands a head 99\% of the time
- The red coin lands a head 1% of the time

Events: $\mathrm{H}_{1}=1^{\text {st }}$ toss is a head $\mathrm{H}_{2}=2^{\text {nd }}$ toss is a head

Example: Biased Coin Toss

Tosses are independent from each other GIVEN the choice of coin
conditional independence

Problem \#4: Biased Coin Toss

What if you don't know what coin it is? Are the tosses still independent?

Last Class - Summary

- Bayes' rule
- Independence
- Conditional Independence

Things are not always what they seem! But with these tools you can calculate the probabilities accurately

Counting in Probability

- Where have we seen this?
- When sample space is finite and made up of equally likely outcomes
- $P(A)=$ \# elements in A \# elements in Ω
- But counting can be more challenging...

Divide \& Conquer

Use the tree to visualize stages Stage 1 has n_{1} possible choices, stage 2 has n_{2} possible choices, etc...

Divide \& Conquer

All branches of the tree must have the same number of choices for the same stage

The Counting Principle

An experiment with m stages has

$$
\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{m}} \text { results, }
$$

where $n_{1}=\#$ choices in the $1^{\text {st }}$ stage, $\mathrm{n}_{2}=$ \# choices in the $2^{\text {nd }}$ stage, $\mathrm{n}_{\mathrm{m}}=\#$ choices in the $\mathrm{m}^{\text {th }}$ stage

k-permutations

- How many ways can we pick k objects out of n distinct objects and arrange them in a sequence?
- Restriction: $k \leq n$

Example: M\&M's

- Pick 4 colors of M\&Ms to be your universal set - How many 2-color sequences can you make?

Deriving a formula

At each stage, how many possible choices are there? [Use the counting principle]

Formula for k-permutations

- Start with n distinct objects
- Arrange k of these objects into a sequence
\# of possible sequences:

$$
=\frac{n!}{(n-k)!}
$$

Special case: $\mathrm{k}=\mathrm{n}$

Formula reduces to: n !

This makes sense - at every stage we lose a choice: $(n)(n-1)(n-2) \ldots(1)$

Combinations

- Start with n distinct objects
- Pick k to form a set
- How is this different from permutations?
- Order does NOT matter
- Forming a subset, not a sequence

Example: M\&M's

- Pick 4 colors as the universal set
- How many 2-color combinations can you create?

Remember that for combinations,

$$
\{\bigcirc\}=\{\bigcirc\}
$$

Deriving a formula

- Permutations =
- 1. Selecting a combination of k items
- 2. Ordering the items
- How many ways can you order a combination of k items?

Deriving a formula

(\# k-permutations $)=$
(\# ways to order k elements) \times (\# of combinations of size k)

Formula for combinations

- Start with n distinct objects
- Arrange k of these objects into a set
\# of possible combinations:

$$
=\frac{n!}{k!(n-k)!}
$$

Another way to write combinations

- " n " choose " k "

$\binom{n}{k}$

- Side note: this is also known as the "binomial coefficient," used for polynomial expansion of the binomial power [outside of class scope]

Partitions

- We have a set with n elements
- Partition of this set has r subsets
- The ith subset has n_{i} elements
- How many ways can we form these subsets from the n elements?

Example: M\&Ms

- 6 total M\&Ms
- 1 of one color
- 2 of one color
- 3 of one color
- How many ways can you arrange them in a sequence?

Example: M\&M's

One perspective

- 6 slots $=3$ subsets (size 1, size 2, size 3)
- Each subset corresponds to a color
- At each stage, we calculate the number of ways to form each subset

Example: M\&M's

- Stage \#1: Place the first color 6 possible slots
Need to fill 1 slot
\# combinations: $\binom{6}{1}$

Example: M\&M's

- Stage \#2: Place the second color
- 5 possible slots
- Need to fill 2 slots

\# combinations: $\binom{5}{2}$

Notice how it does not matter which M\&M we place in which slot - this implies order does not matter \rightarrow use combinations

Example: M\&M's

- Stage \#3: Place the third color
- 3 possible slots
- Need to fill 3 slots

Deriving a formula for partitions

- Solution to our example: $\binom{6}{1}\binom{5}{2}\binom{3}{3}$

Generalized form?

Formula for partitions

- Start with n-element set (no order)
- In this set, there are r disjoint subsets
- The ith subset contains n_{i} elements
- How many ways can we form the subsets?

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}
$$

Problem Revisited

- A class has 4 boys and 12 girls. They are randomly divided into 4 groups of 4 . What's the probability that each group has 1 boy?
- Use counting methods (partitions) this time

Summary

The Counting Principle

- Permutations

Combinations
Partitions

MIT OpenCourseWare
|http://ocw.mit.edu

Probability: Random Isn't So Random

Summer 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

