Glossary

Glossary of Symbols

Contents:

Glossary of Roman Symbols

Glossary of Greek Symbols

Glossary of Roman Symbols

2	The Euclidean norm or "two-norm." For a vector <u>a</u> $\ \underline{a}\ _2 = \sqrt{\sum_{k} (a_k)^2}$
~	When used above a symbol, denotes "in the rotated coordinate system."
a _k , b _k	Cross-sectional dimensions of a beam at nodal point k .
^t A	Cross-sectional area at time t.
<u>A</u> ⁽ⁱ⁾	A square matrix used in the BFGS method.
BL	Linear strain-displacement matrix used in linear or M.N.O. analysis.
° <mark>B</mark> ∟	Linear strain-displacement matrix used in the T.L. formulation.
ťΒι	Linear strain-displacement matrix used in the U.L. formulation.
0 <u>8</u> ∟0 , 0 <u>8</u> ∟1	Intermediate matrices used to compute ${}^{b}_{0}B_{L}$; ${}^{b}_{0}B_{L1}$ contains the "initial displacement effect."
^t <u>B</u> nL	Nonlinear strain-displacement ma- trix used in the T.L. formulation.
	Nonlinear strain-displacement ma- trix used in the U.L. formulation.
С	The wave speed of a stress wave (dynamic analysis).
C _{ii}	Diagonal element corresponding to the <i>i</i> th degree of freedom in the damping matrix (dynamic analysis).
C	The damping matrix (dynamic analysis).

C ₁ , C ₂	The Mooney-Rivlin material con- stants (for rubberlike materials).
⁵ Cij	Components of the Cauchy-Green deformation tensor (basic concepts of Lagrangian continuum mechanics).
<u>C</u> e	Matrix containing components of the constitutive tensor referred to a local coordinate system.
Ċ	Matrix containing components of the constitutive tensor, used in linear and M.N.O. analysis.
<u>D</u> o	Matrix containing components of the constitutive tensor ${}_{0}C_{ijrs}$, used in the T.L. formulation.
<u>D</u> r	Matrix containing components of the constitutive tensor ${}_tC_{ijrs}$, used in the U.L. formulation.
C _{ijrs}	Components of elastic constitutive tensor relating $d\sigma_{ij}$ to de_{rs}^{E}
C ^{EP}	Components of elasto-plastic constitutive tensor relating $d\sigma_{ij}$ to de_{rs}
₀ C _{ijrs}	Components of tangent constitutive tensor relating d_0S_{ij} to $d_0\epsilon_{rs}$
tCijrs	$\begin{array}{llllllllllllllllllllllllllllllllllll$
DNORM	Reference displacement used with displacement convergence tolerance DTOL (solution of nonlinear
DMNORM	equations). DMNORM is the reference rotation used when rotational degrees of freedom are present.
DTOL	Convergence tolerance used to mea- sure convergence of the displace- ments and rotations (solution of non- linear equations).

det	The determinant function, for example, det ${}_{0}^{t}\underline{X}$.
^t dV	A differential element of volume evaluated at time t .
⁰dV	A differential element of volume evaluated at time 0.
ď <u>x</u>	Vector describing the orientation and length of a differential material fiber at time t (basic concepts of Lagrangian continuum mechanics).
d ^o <u>x</u>	Vector describing the orientation and length of a differential material fiber at time 0 (basic concepts of Lagrangian continuum mechanics).
⁺ē ^C	Effective creep strain, evaluated at time t (creep analysis).
eij	Components of infinitesimal strain ten- sor (linear and M.N.O. analysis).
oeij	Linear (in the incremental displace- ments) part of $_{0}\varepsilon_{ij}$ (T.L. formulation)
teij.	Linear (in the incremental displace- ments) part of $t \epsilon_{ij}$ (U.L. formulation).
teij teij teij teij teij teij te	Various types of inelastic strains evaluated at time t (inelastic analysis): IN inelastic C creep P plastic TH thermal VP viscoplastic
<u> </u>	Unit vectors in the r , s , and t directions (shell analysis).
<u>Ē</u> r , <u>Ē</u> s	Unit vectors constructed so that $\underline{\bar{e}}_{r}, \ \underline{\bar{e}}_{s}, \ \underline{e}_{t}$ are mutually orthogonal (shell analysis).
E	Young's modulus.
E _a , E _b	Young's moduli in the <i>a</i> and <i>b</i> directions (orthotropic analysis).

nvergence tolerance used to mea- re convergence in energy (solution nonlinear equations). function that depends on X olution of nonlinear equations). vector function that depends on e column vector \underline{U} olution of nonlinear equations). mponents of externally applied ces per unit current volume and unit rrent surface area.
blution of nonlinear equations). vector function that depends on e column vector \underline{U} blution of nonlinear equations). mponents of externally applied ces per unit current volume and unit
e column vector U olution of nonlinear equations). mponents of externally applied ces per unit current volume and unit
ces per unit current volume and unit
eld function (elasto-plastic anal- is).
ctor of nodal point forces equiva- it to the internal element stresses.
ctor of nodal point forces equiva- it to the internal element stresses .L. formulation).
ctor of nodal point forces equiva- it to the internal element stresses .L. formulation).
lumn vector containing the inertia rces for all degrees of freedom ynamic analysis).
lumn vector containing the damp- g forces for all degrees of freedom ynamic analysis).
lumn vector containing the elastic rces (nodal point forces equivalent element stresses) for all degrees freedom (dynamic analysis).
cceleration due to gravity.
ear modulus measured in the local ordinate system <i>a-b</i> (orthotropic alysis).
oss-sectional height (beam ele- ent).

H	Displacement interpolation matrix
H ^s	(derivation of element matrices). Displacement interpolation matrix
	for surfaces with externally applied tractions (derivation of element matrices).
I_1, I_2, I_3	The invariants of the Cauchy-Green deformation tensor (analysis of rub- berlike materials).
Ţ	The Jacobian matrix relating the X _i coordinates to the isoparametric coor- dinates (two- and three-dimensional solid elements).
Γ'	The Jacobian matrix relating the ${}^{t}X_{i}$ coordinates to the isoparametric coordinates (two- and three-dimensional solid elements in geometrically nonlinear analysis).
k	Shear factor (beam and shell analysis).
١ <u>K</u>	The tangent stiffness matrix, includ- ing all geometric and material nonlinearities.
o <u>r</u> K	The tangent stiffness matrix, includ- ing all geometric and material non- linearities (T.L. formulation).
ţΚ	The tangent stiffness matrix, includ- ing all geometric and material non- linearities (U.L. formulation).
₀ <u>K</u> L , <u></u> KL	The contribution to the total tangent stiffness matrix arising from the lin- ear part of the Green-Lagrange strain tensor.
	${}_{0}^{t}\underline{\mathbf{K}}_{L}$ - T.L. formulation
	<code><code>ᡶK⊥ - U.L. formulation</code></code>
^t KnL, ^t KnL	The contribution to the total tangent stiffness matrix arising from the nonlinear part of the Green- Lagrange strain tensor.
	${}_{0}^{t}\underline{K}_{NL}$ - T.L. formulation
	${}^{t}_{t}\underline{K}_{NL}$ - U.L. formulation
<u>Ŕ</u>	Effective stiffness matrix, including inertia effects but no nonlinear effects (dynamic substructure analysis).

۲ <u>Ќ</u>	Effective stiffness matrix, including inertia effects and nonlinear effects (dynamic substructure analysis).
<u> </u> <u></u> Kc	$\underline{\hat{K}}$ after static condensation (dynamic substructure analysis).
^t <u>Ŕ</u> c	${}^{t}\!\hat{\underline{K}}$ after static condensation (dynamic substructure analysis).
^t Knonlinear	Nonlinear stiffness effects due to geometric and material nonlinearities (dynamic substructure analysis).
tL	Length, evaluated at time <i>t</i> .
Le	Element length, chosen using the relation $L_e = c \Delta t$ (dynamic analysis).
Lw	Wave length of a stress wave (dynamic analysis).
m _{ii}	Lumped mass associated with degree of freedom <i>i</i> (dynamic analysis).
Μ	The mass matrix (dynamic analysis).
^t Pij	Quantities used in elasto-plastic analysis, defined as ${}^{t}p_{ij} = -\frac{\partial^{t}F}{\partial^{t}e_{ij}}\Big _{{}^{t}\sigma_{ij}}$ fixed
'q _{ij}	Quantities used in elasto-plastic analysis defined as ${}^{t}q_{ij} = \frac{\partial^{t}F}{\partial^{t}\sigma_{ij}}\Big _{{}^{t}e_{ij}^{P}} \text{ fixed}$
r,s,t	Isoparametric coordinates (two- and three-dimensional solid elements, shell elements).
₀ ^t <u>R</u>	Rotation matrix (polar decomposition of $_0^{!}\underline{C}$).
<u>R</u>	Reference load vector (automatic load step incrementation).
^t <u>R</u>	Applied loads vector, corresponding to time <i>t</i> .

,

1

Ŕ	Virtual work associated with the applied loads, evaluated at time t .
RNORM,	Reference load used with force tol- erance RTOL (solution of nonlinear equations).
RMNORM	Reference moment used when rota- tional degrees of freedom are present.
RTOL	Convergence tolerance used to mea- sure convergence of the out-of-bal- ance loads (solution of nonlinear equations).
^t S _{ij}	Deviatoric stress evaluated at time t (elasto-plastic analysis).
'S	Surface area, evaluated at time t.
°¦S ^{ij}	Components of 2nd Piola-Kirchhoff stress tensor, evaluated at time t and referred to the original configuration (basic Lagrangian continuum mechanics).
₀ S _{ij} , ₁ Sij	Components of increments in the 2nd Piola-Kirchhoff stress tensors: ${}_{0}S_{ij} = {}^{t+\Delta t} {}_{0}S_{ij} - {}^{t}_{0}S_{ij}$ ${}_{t}S_{ij} = {}^{t+\Delta t} {}_{1}S_{ij} - {}^{t}T_{ij}$
<u></u>	Matrix containing the components of the 2nd Piola-Kirchhoff stress tensor (T.L. formulation).
<u>ئ</u>	Vector containing the components of the 2nd Piola-Kirchhoff stress tensor (T.L. formulation).
t, t+Δt	Times for which a solution is to be obtained in incremental or dynamic analysis. The solution is presumed known at time t and is to be determined for time $t + \Delta t$.
ī	"Effective" time (creep analysis).
Ţ	Displacement transformation matrix (truss element).
T _{co}	Cut-off period (the smallest period to be accurately integrated in dynamic analysis).

Tn	Smallest period in finite element assemblage (dynamic analysis).
^t Ui	Total displacement of a point in the i th direction.
ťüį	Total acceleration of a point in the <i>i</i> th direction (dynamic analysis).
Ui	Incremental displacement of a point in the <i>i</i> th direction.
uis	Components of displacement of a point upon which a traction is applied.
tou _{i,j}	Derivatives of the total displace- ments with respect to the original coordinates (T.L. formulation).
oUi,j	Derivatives of the incremental dis- placements with respect to the orig- inal coordinates (T.L. formulation).
tUi,j.	Derivatives of the incremental dis- placements with respect to the cur- rent coordinates (U.L. formulation).
u, ^k	Incremental displacement of nodal point k in the <i>i</i> th direction.
tu¦k	Total displacement of nodal point k in the <i>i</i> th direction at time t .
û	A vector containing incremental nodal point displacements.
^ئ	A vector containing total nodal point displacements at time t .
<u>'</u> ن	Vector of nodal point accelerations, evaluated at time t .
ť <u>Ú</u>	Vector of nodal point velocities, evaluated at time <i>t</i> .
<u>U</u>	Vector of nodal point displacements, evaluated at time t.
<u>¦U</u>	Stretch matrix (polar decomposition of ${}_{0}^{t}\underline{C}$).
<u>¥</u> ⁽ⁱ⁾	Column vector used in the BFGS method (solution of nonlinear equations).

ťV	Volume evaluated at time t.
^t ⊻n , ^t Vni	Director vector at node k evaluated at time t (shell analysis).
<u>V</u> k	Increment in the director vector at node k (shell analysis).
¹ <u>∨</u> ^k , ¹ <u>∨</u> ²	Vectors constructed so that ${}^{t}\underline{V}_{1}^{k}$, ${}^{t}\underline{V}_{2}^{k}$ and ${}^{t}\underline{V}_{1}^{k}$, are mutually perpendicular (shell analysis).
¹⊻s , ¹⊻ť	Director vectors in the s and t directions at node k , evaluated at time t (beam analysis).
\underline{V}_{s}^{k} , \underline{V}_{t}^{k}	Increments in the director vectors in the s and t directions at node k (beam analysis).
<u>w</u> ⁽ⁱ⁾	Vector used in the BFGS method (solution of nonlinear equations).
W	Preselected increment in external work (automatic load step in- crementation).
o ^t W	Strain energy density per unit origi- nal volume, evaluated at time t (analysis of rubberlike materials).
^t W _P	Plastic work per unit volume (elasto- plastic analysis).
^t Xi	Coordinate of a material particle in the i th direction at time t .
^t X _i ^k	Coordinate of node k in the <i>i</i> th direction at time t .
oʻx _{i,j} , oʻX _{ij}	Components of the deformation grad- ient tensor, evaluated at time t and referred to the configuration at time 0.
°txi,j, t <u>X</u> ij	Components of the inverse deforma- tion gradient tensor.

Glossary of Greek Symbols

α	Parameter used in the α -method of time integration.
	$\alpha = 0$ - Euler forward method $\alpha = \frac{1}{2}$ - Trapezoidal rule $\alpha = 1$ - Euler backward method
α_k	Incremental nodal point rotation for node k about the ${}^{t}V_{1}^{k}$ vector (shell analysis).
ťα	Coefficient of thermal expansion (thermo-elasto-plastic and creep analysis).
β	Line search parameter (used in the solution of nonlinear equations).
β	Section rotation of a beam element.
βκ	Incremental nodal point rotation for node k about the ${}^{i}V_{2}^{k}$ vector (shell analysis).
γ	Transverse shear strain in a beam element.
γ	Fluidity parameter used in visco- plastic analysis.
γ	Related to the buckling load factor λ through the relationship $\gamma = \frac{\lambda - 1}{\lambda}$
ťγ	Proportionality coefficient between the creep strain rates and the total deviatoric stresses (creep analysis).
Υ ⁽ⁱ⁾	Force vector in the BFGS method.

<u>∂f</u> ∂Ū	A square coefficient matrix with entries $\left[\frac{\partial \underline{f}}{\partial \underline{U}}\right]_{ij} = \frac{\partial f_i}{\partial U_j}$ (solution of nonlinear equations).
δ	When used before a symbol, this denotes "variation in."
δ _{ij}	Kronecker delta; $\delta_{ij} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$
<u>δ</u> ⁽ⁱ⁾	Displacement vector in the BFGS method.
$\Delta \ell$	"Length" used in the constant arc- length constraint:equation (automatic load step incrementation).
Δt	Time step used in incremental or dynamic analysis.
Δt_{cr}	Critical time step (dynamic anal- ysis).
Δ <u>U</u> ⁽ⁱ⁾	Increment in the nodal point dis- placements during equilibrium iter- ations $\Delta \underline{U}^{(i)} = {}^{t+\Delta t} \underline{U}^{(i)} - {}^{t+\Delta t} \underline{U}^{(i-1)}$
Δ <u>Ū</u>	Vector giving the direction used for line searches (solution of nonlinear equations).
Δ <u>Ū</u> ⁽ⁱ⁾ , Δ <u>Ū</u>	Intermediate displacement vectors used during automatic load step incrementation.

Δ <u>Χ</u> ^(k)	Increment in the modal displacements (mode superposition analysis).
Δτ	A time step corresponding to a sub- division of the time step Δt (plastic analysis).
o ^t Eij.	Components of Green-Lagrange strain tensor, evaluated at time t and referred to time 0.
oEij	Components of increment in the Green- Lagrange strain tensor: ${}_{0}\varepsilon_{ij} = {}^{t+\Delta t}{}_{0}\varepsilon_{ij} - {}^{t}_{0}\varepsilon_{ij}$
¦Eij	Components of Almansi strain tensor.
, ξ, ζ	Convected coordinate system (used in beam analysis).
o ^ח ij	The "nonlinear" part of the incre- ment in the Green-Lagrange strain tensor.
θκ	Nodal point rotation for node k (two- dimensional beam analysis).
θ ^k	Nodal point rotation for node k about the x_i axis (beam analysis).
ťθ	Temperature at time t (thermo- elasto-plastic and creep analysis).
^t ĸ	Variable in plastic analysis.
λ	Lamé constant (elastic analysis). $\lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)}$
λ	Scaling factor used to scale the stiff- ness matrix and load vector in lin- earized buckling analysis.
ťλ	Load factor used to obtain the cur- rent loads from the reference load vector: ${}^{t}\underline{\mathbf{R}} = {}^{t}\underline{\lambda}\underline{\mathbf{R}}$
	(automatic load step incre- mentation).

at time t in M.N.O. analysis. ${}^{t}\bar{\sigma}$ Effective stress (used in creep analysis) ${}^{t}\bar{\sigma} = \sqrt{\frac{3}{2}} {}^{t} {s_{ij}} {}^{t} {s_{ij}}$ ${}^{t}\bar{\sigma} = \sqrt{\frac{3}{2}} {}^{t} {s_{ij}} {}^{t} {s_{ij}}$ ${}^{t}\sigma_{y}$ Yield stress at time t (plastic analysis). σ_{y} Initial yield stress (plastic analysis). $\bar{\sigma}_{y}$ Initial yield stress (plastic analysis). $\bar{\Sigma}$ Denotes "sum over all elements." $\hat{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis. τ (as a left superscript)—Denotes a time. Examples ${}^{t}K, {}^{t}\underline{B}$ - linearized buckling analysis ${}^{t}K$ - solution of nonlinear equations ${}^{t}\tau_{ij}$ Components of Cauchy stress tensor, evaluated at time t.	۲	Proportionality coefficient in calcula- tion of the plastic strain increments (plastic analysis).
ν Poisson's ratio. ν_{ab} Poisson's ratio referred to the local coordinate system a - b (orthotropic analysis). Π Total potential energy (fracture mechanics analysis). $\dot{\mu}$ Mass density, evaluated at time t . $\dot{\nu}\rho$ Mass density, evaluated at time t . $\dot{\nu}\sigma$ Effective stress (used in creep analysis) $\dot{\nu}\sigma$ Effective stress (used in creep analysis) $\dot{\nu}\sigma$ Yield stress at time t (plastic analysis). σ_y Initial yield stress (plastic analysis). σ_y Initial yield stress (plastic analysis). Σ Denotes "sum over all elements." $\dot{\nu}$ Vector containing the components of 	μ	Lamé constant (elastic analysis).
v_{ab} Poisson's ratio referred to the local coordinate system a - b (orthotropic analysis). Π Total potential energy (fracture mechanics analysis). $^{\dagger}\rho$ Mass density, evaluated at time t . $^{\dagger}\sigma_{ij}$ Components of stress tensor evaluated at time t in M.N.O. analysis. $^{\dagger}\bar{\sigma}$ Effective stress (used in creep analysis) $^{\dagger}\bar{\sigma} = \sqrt{\frac{3}{2}} t_{Siji} t_{Siji}$ $^{\dagger}\sigma_{y}$ Yield stress at time t (plastic analysis). $^{\dagger}\sigma_{y}$ Yield stress (plastic analysis). $\bar{\sigma}_{y}$ Initial yield stress (plastic analysis). $\bar{\sigma}_{y}$ Initial yield stress (plastic analysis). $\bar{\Sigma}$ Denotes "sum over all elements." $^{\dagger}\hat{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis. $\bar{\tau}$ (as a left superscript)—Denotes a time. Examples $^{\dagger}K$, $^{\dagger}H$ - linearized buckling analysis $^{\dagger}K$ - solution of nonlinear equations $^{\dagger}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t .		$\mu = \frac{E}{2(1+\nu)}$
Total potential energy (fracture mechanics analysis).ITotal potential energy (fracture mechanics analysis). t^{0} Mass density, evaluated at time t. t^{0} Mass density, evaluated at time t. t^{0} Components of stress tensor evaluated at time t in M.N.O. analysis. t^{0} Effective stress (used in creep analysis) $t^{0} = \sqrt{\frac{3}{2}} t_{Sij} t_{Sij}$ t^{0} Vield stress at time t (plastic analysis). t^{0} Initial yield stress (plastic analysis). ∇ Initial yield stress (plastic analysis). Σ Denotes "sum over all elements." t^{1} Vector containing the components of the stress tensor in M.N.O. analysis. T (as a left superscript)—Denotes a time. Examples T_{K} , " H - linearized buckling analysis T_{K} - solution of nonlinear equations t^{T} Matrix containing the components of the Cauchy stress tensor (U.L.	v	Poisson's ratio.
the image of the stress is	Vab	coordinate system a-b (orthotropic
$^{t}\sigma_{ij}$ Components of stress tensor evaluated at time t in M.N.O. analysis. $^{t}\bar{\sigma}$ Effective stress (used in creep analysis) $^{t}\bar{\sigma} = \sqrt{\frac{3}{2}} \mathbf{t}_{Sij} \mathbf{t}_{Sij}$ $^{t}\bar{\sigma}$ Yield stress (used in creep analysis) $^{t}\bar{\sigma} = \sqrt{\frac{3}{2}} \mathbf{t}_{Sij} \mathbf{t}_{Sij}$ $^{t}\sigma_{y}$ Yield stress at time t (plastic analysis). σ_{y} Initial yield stress (plastic analysis). $\bar{\sigma}_{y}$ Denotes "sum over all elements." $\underline{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis. T (as a left superscript)-Denotes a time. Examples \mathbf{T}_{k} , \mathbf{T}_{l} - linearized buckling analysis \mathbf{T}_{k} - solution of nonlinear equations $^{t}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ^{t}T Matrix containing the components of the Cauchy stress tensor (U.L.	П	
at time t in M.N.O. analysis. ${}^{t}\bar{\sigma}$ Effective stress (used in creep analysis) ${}^{t}\bar{\sigma} = \sqrt{\frac{3}{2}} {}^{t} s_{ij} {}^{t} s_{ij}$ ${}^{t}\bar{\sigma} = \sqrt{\frac{3}{2}} {}^{t} s_{ij} {}^{t} s_{ij}$ ${}^{t}\bar{\sigma}$ Yield stress at time t (plastic analysis). σ_{y} Initial yield stress (plastic analysis). σ_{y} Initial yield stress (plastic analysis). $\bar{\Sigma}$ Denotes "sum over all elements." ${}^{t}\bar{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis. τ (as a left superscript)—Denotes a time. Examples ${}^{t}\bar{K}$, ${}^{t}\bar{H}$ - linearized buckling analysis ${}^{t}\bar{K}$ - solution of nonlinear equations ${}^{t}\tau_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ${}^{t}T$ Matrix containing the components of the Cauchy stress tensor (U.L.	ťρ	Mass density, evaluated at time t .
InterviewInterviewInterviewanalysis) ${}^t\bar{\sigma} = \sqrt{\frac{3}{2}} {}^t s_{ij} {}^t s_{ij}$ ${}^t\bar{\sigma}_y$ Yield stress at time t (plastic analysis). σ_y Initial yield stress (plastic analysis). $\underline{\Sigma}$ Denotes "sum over all elements." $\frac{1}{\hat{\Sigma}}$ Vector containing the components of the stress tensor in M.N.O. analysis. T (as a left superscript)—Denotes a time.Examples tK , ${}^t\underline{H}$ - linearized buckling analysis ${}^tT_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ${}^t\underline{T}$ Matrix containing the components of the Cauchy stress tensor (U.L.	^t ơij.	Components of stress tensor evaluated at time t in M.N.O. analysis.
$^{t}\sigma_{y}$ Yield stress at time t (plastic analysis). σ_{y} Initial yield stress (plastic analysis). Σ Denotes "sum over all elements." $\overset{t}{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis. T (as a left superscript)—Denotes a time. Examples $^{T}K, ^{T}H$ - linearized buckling analysis ^{T}K - solution of nonlinear equations $^{t}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ^{t}T Matrix containing the components of the Cauchy stress tensor (U.L.	^t õ	analysis)
σ_y Initial yield stress (plastic analysis). Σ Denotes "sum over all elements." $\frac{1}{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis.T(as a left superscript)—Denotes a time. Examples ${}^{T}\underline{K}, {}^{T}\underline{B}$ - linearized buckling analysis ${}^{T}\underline{K}$ - solution of nonlinear equations ${}^{t}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ${}^{t}\underline{T}$ Matrix containing the components of the Cauchy stress tensor (U.L.		${}^{t}\bar{\sigma}=\sqrt{\frac{3}{2}}{}^{t}s_{ij}{}^{t}s_{ij}$
Σ_{m} Denotes "sum over all elements." $t \hat{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis. T (as a left superscript)—Denotes a time. Examples $^{T}K, ^{T}H$ - linearized buckling analysis ^{T}K - solution of nonlinear equations t_{Tij} Components of Cauchy stress tensor, evaluated at time t. t_{T} Matrix containing the components of the Cauchy stress tensor (U.L.	ťσy	
m $^{t}\hat{\Sigma}$ Vector containing the components of the stress tensor in M.N.O. analysis.T(as a left superscript)—Denotes a time. Examples $^{T}K, ^{T}H$ - linearized buckling analysis ^{T}K - solution of nonlinear equations $^{t}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ^{t}T Matrix containing the components of the Cauchy stress tensor (U.L.	σ_y	Initial yield stress (plastic analysis).
the stress tensor in M.N.O. analysis. T (as a left superscript)—Denotes a time.Examples ${}^{T}\underline{K}, {}^{T}\underline{R}$ - linearized buckling analysis ${}^{T}\underline{K}, {}^{T}\underline{R}$ - linearized buckling analysis ${}^{T}\underline{K}$ - solution of nonlinear equations ${}^{t}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t. ${}^{t}\underline{T}$ Matrix containing the components of the Cauchy stress tensor (U.L.	Σm	Denotes "sum over all elements."
Examples $^{T}\underline{K}$, $^{T}\underline{B}$ - linearized buckling analysis $^{T}\underline{K}$, $^{T}\underline{B}$ - linearized buckling analysis $^{T}\underline{K}$ - solution of nonlinear equations $^{t}T_{ij}$ Components of Cauchy stress tensor, evaluated at time t. $^{t}\underline{T}$ Matrix containing the components of the Cauchy stress tensor (U.L.	t <u>Ê</u>	Vector containing the components of the stress tensor in M.N.O. analysis.
${}^{t}\underline{K}, {}^{t}\underline{B} - \text{linearized buckling analysis} \\ {}^{t}\underline{K} - \text{solution of nonlinear equations} \\ {}^{t}\mathbf{T}_{ij} \qquad \text{Components of Cauchy stress tensor,} \\ \text{evaluated at time } t. \\ {}^{t}\underline{T} \qquad \text{Matrix containing the components of} \\ \text{the Cauchy stress tensor (U.L.} \end{cases}$	Ŧ	(as a left superscript)—Denotes a time.
${}^{t}\overline{\mathbf{T}}_{ij} \qquad \begin{array}{c} & \overset{T}{\underline{\mathbf{K}}} & - \text{ solution of nonlinear equations} \\ & \overset{t}{\underline{\mathbf{T}}}_{ij} \qquad \begin{array}{c} & \text{Components of Cauchy stress tensor,} \\ & \text{evaluated at time } t. \end{array}$		Examples
t <u>T</u> Matrix containing the components of the Cauchy stress tensor (U.L.		${}^{T}\underline{K}, {}^{T}\underline{R}$ - linearized buckling analysis ${}^{T}\underline{K}$ - solution of nonlinear equations
the Cauchy stress tensor (U.L.	^t Τij	Components of Cauchy stress tensor, evaluated at time t .
	Ţ	

^t <u>1</u>	Vector containing the components of the Cauchy stress tensor (U.L. formulation).
φ	A vector containing the nodal point displacements corresponding to a buckling mode shape.
Φi	A vector containing the nodal point displacements corresponding to the <i>i</i> th mode shape.
ω _i	Natural frequency of the <i>i</i> th mode shape.
ω ^(m)	Largest natural frequency of element <i>m</i> .
(ω ^(m)) _{max}	Largest natural frequency of all individual elements.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.