Glossary

Glossary of Symbols

Contents:

Glossary of Roman Symbols
- Glossary of Greek Symbols

Glossary of Roman Symbols

| \|| $\\|_{2}$ | The Euclidean norm or "two-norm."
 For a vector a $\\|a\\|_{2}=\sqrt{\sum_{k}\left(a_{k}\right)^{2}}$ |
| :---: | :---: |
| \sim | When used above a symbol, denotes "in the rotated coordinate system." |
| a_{k}, b_{k} | Cross-sectional dimensions of a beam at nodal point k. |
| ${ }^{1} \mathrm{~A}$ | Cross-sectional area at time t. |
| $\mathrm{A}^{(i)}$ | A square matrix used in the BFGS method. |
| B L_{L} | Linear strain-displacement matrix used in linear or M.N.O. analysis. |
| ${ }^{1}$ B ${ }_{\text {c }}$ | Linear strain-displacement matrix used in the T.L. formulation. |
| ${ }_{\text {'B }}^{\text {B }}$ | Linear strain-displacement matrix used in the U.L. formulation. |
| ${ }_{0}^{\text {t }} \underline{B}_{L 0},{ }_{0}^{t} \underline{B}_{L 1}$ | Intermediate matrices used to compute ${ }_{0}^{1} \underline{B}_{L} ;{ }^{t}{ }^{t} \underline{B}_{L 1}$ contains the "initial displacement effect." |
| ${ }_{0}^{1} \underline{B}^{\text {NL }}$ | Nonlinear strain-displacement matrix used in the T.L. formulation. |
| ${ }_{6} \underline{B}_{\text {NL }}$ | Nonlinear strain-displacement matrix used in the U.L. formulation. |
| c | The wave speed of a stress wave (dynamic analysis). |
| c_{ii} | Diagonal element corresponding to the i th degree of freedom in the damping matrix (dynamic analysis). |
| \underline{C} | The damping matrix (dynamic analysis). |

$\mathrm{C}_{1}, \mathrm{C}_{2}$	The Mooney-Rivlin material constants (for rubberlike materials).
${ }_{0}^{1} \mathrm{C}_{i j}$	Components of the Cauchy-Green deformation tensor (basic concepts of Lagrangian continuum mechanics).
$\underline{\mathrm{C}}_{\ell}$	Matrix containing components of the constitutive tensor referred to a local coordinate system.
C	Matrix containing components of the constitutive tensor, used in linear and M.N.O. analysis.
${ }_{0} \underline{C}$	Matrix containing components of the constitutive tensor ${ }_{0} \mathrm{C}_{\text {jirs }}$, used in the T.L. formulation.
${ }^{\text {C }}$	Matrix containing components of the constitutive tensor ${ }^{1} \mathrm{C}_{i \mathrm{irs}}$. used in the U.L. formulation.
$\mathrm{C}_{\text {ijrs }}^{\text {E }}$	Components of elastic constitutive tensor relating $d \sigma_{i j}$ to $d e_{\mathrm{rs}}^{\mathrm{E}}$
$\mathrm{CiFirs}^{\text {EP }}$	Components of elasto-plastic constitutive tensor relating $d \sigma_{i j}$ to $\mathrm{de}_{\mathrm{rs}}$
${ }_{0} \mathrm{C}_{\text {ijrs }}$	Components of tangent constitutive tensor relating $d_{0} S_{i j}$ to $d_{0} \varepsilon_{r s}$
${ }_{1} \mathrm{C}_{\text {ijs }}$	Components of tangent constitutive tensor relating $d_{t} S_{i j}$ to $d_{t} \varepsilon_{r s}$
DNORM	Reference displacement used with displacement convergence tolerance DTOL (solution of nonlinear equations).
DMNORM	DMNORM is the reference rotation used when rotational degrees of freedom are present.
DTOL	Convergence tolerance used to measure convergence of the displacements and rotations (solution of nonlinear equations).

det	The determinant function, for example, $\operatorname{det}_{0}^{\mathrm{t}} \mathrm{X}$.
${ }^{t} \mathrm{dV}$	A differential element of volume evaluated at time t.
${ }^{0} \mathrm{dV}$	A differential element of volume evaluated at time 0 .
$d^{\prime} \underline{x}$	Vector describing the orientation and length of a differential material fiber at time t (basic concepts of Lagrangian continuum mechanics).
$d^{0} \underline{x}$	Vector describing the orientation and length of a differential material fiber at time 0 (basic concepts of Lagrangian continuum mechanics).
${ }^{t} \mathrm{e}^{c}$	Effective creep strain, evaluated at time t (creep analysis).
$e_{i j}$	Components of infinitesimal strain tensor (linear and M.N.O. analysis).
${ }_{o} \mathrm{e}_{i j}$	Linear (in the incremental displacements) part of $o \varepsilon_{i j}$ (T.L. formulation)
teil	Linear (in the incremental displacements) part of ${ }_{\mathrm{t}}^{\mathrm{ij}} \mathrm{f}$ (U.L. formulation).
$\begin{aligned} & { }^{t} e_{i j}^{I N} \\ & { }^{\mathrm{t}} \mathrm{e}_{j}^{c} \\ & { }^{\mathrm{t}} \mathrm{e}_{j}^{\mathrm{p}} \\ & { }^{t} \mathrm{e}_{j}^{\mathrm{T}} \mathrm{H} \\ & { }^{\mathrm{t}} \mathrm{e}_{j}^{\mathrm{VP}} \end{aligned}$	Various types of inelastic strains evaluated at time t (inelastic analysis): IN inelastic c creep P plastic TH thermal vp viscoplastic
$\underline{\underline{e}}$ r, $\underline{e}_{s}, \underline{e_{r}}$	Unit vectors in the r, s, and t directions (shell analysis).
$\underline{\underline{\mathbf{e}}}_{\mathbf{r}},{\underline{\underline{\underline{e}}}{ }_{\mathbf{s}}}$	Unit vectors constructed so that $\underline{\underline{\mathbf{e}}}_{\mathrm{r}}, \underline{\overline{\mathbf{e}}}_{\mathrm{s}}, \underline{\mathbf{e}}_{\mathrm{t}}$ are mutually orthogonal (shell analysis).
E	Young's modulus.
E_{a}, E_{b}	Young's moduli in the a and b direc tions (orthotropic analysis).

E_{T}	Strain hardening modulus (elastoplastic analysis).
ETOL	Convergence tolerance used to measure convergence in energy (solution of nonlinear equations).
$f(x)$	A function that depends on x (solution of nonlinear equations).
$\underline{\mathrm{f}}$ (U)	A vector function that depends on the column vector \underline{U} (solution of nonlinear equations).
t_{i}^{B}, t_{i}^{s}	Components of externally applied forces per unit current volume and unit current surface area.
${ }^{t} \mathrm{~F}$	Yield function (elasto-plastic analysis).
${ }^{1} \mathrm{~F}$	Vector of nodal point forces equivalent to the internal element stresses.
${ }^{\text {d }} \mathrm{O}$	Vector of nodal point forces equivalent to the internal element stresses (T.L. formulation).
t	Vector of nodal point forces equivalent to the internal element stresses (U.L. formulation).
$\mathrm{F}_{1}(\mathrm{t})$	Column vector containing the inertia forces for all degrees of freedom (dynamic analysis).
$\underline{F}_{\text {D }}(\mathrm{t})$	Column vector containing the damping forces for all degrees of freedom (dynamic analysis).
$\underline{F}_{E}(t)$	Column vector containing the elastic forces (nodal point forces equivalent to element stresses) for all degrees of freedom (dynamic analysis).
g	Acceleration due to gravity.
G_{ab}	Shear modulus measured in the local coordinate system $a-b$ (orthotropic analysis).
h	Cross-sectional height (beam element).
$h_{\text {k }}$	Interpolation function corresponding to nodal point k.

H $H^{\text {S }}$	Displacement interpolation matrix (derivation of element matrices). Displacement interpolation matrix	${ }^{\text {t }}$ K	Effective stiffness matrix, including inertia effects and nonlinear effects (dynamic substructure analysis).
$\underline{H}^{\text {S }}$	for surfaces with externally applied tractions (derivation of element matrices).	$\underline{\underline{k}}_{C}$	$\underline{\hat{K}}$ after static condensation (dynamic substructure analysis).
$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$	The invariants of the Cauchy-Green deformation tensor (analysis of rub-	${ }^{\dagger} \underline{\underline{K}}_{c}$	${ }^{t} \hat{K}$ after static condensation (dynamic substructure analysis).
\underline{J}	The Jacobian matrix relating the x_{i} coordinates to the isoparametric coor-	${ }^{\text {t }} \underline{K}_{\text {nonlinear }}$	Nonlinear stiffness effects due to geometric and material nonlinearities (dynamic substructure analysis).
	solid elements).	${ }^{t} \mathrm{~L}$	Length, evaluated at time t.
${ }^{\text {'J }}$	The Jacobian matrix relating the ${ }^{t} x_{i}$ coordinates to the isoparametric coordinates (two- and three-dimensional	$\mathrm{L}_{\text {e }}$	Element length, chosen using the relation $L_{e}=c \Delta t$ (dynamic analysis).
	nonlinear analysis).	L_{w}	Wave length of a stress wave
k	Shear factor (beam and shell		
	analysis).	m_{ii}	Lumped mass associated with degree
${ }^{\text {t }}$ K	The tangent stiffness matrix, includ-		
	ing all geometric and material nonlinearities.	M	The mass matrix (dynamic analysis).
${ }_{0}^{\text {t }} \mathrm{K}$	The tangent stiffness matrix, including all geometric and material non-	${ }^{t} p_{i j}$	Quantities used in elasto-plastic analysis, defined as
	linearities (T.L. formulation).		
tK	The tangent stiffness matrix, including all geometric and material non-		$\left.\partial e_{i j}{ }^{P_{\sigma j}}\right\|_{\sigma_{i j}}$ fixed
			Quantities used in elasto-plastic
${ }_{0}^{t} \underline{K_{L}},{ }^{t} \underline{K_{L}}$	The contribution to the total tangent stiffness matrix arising from the linear part of the Green-Lagrange strain tensor.		analysis defined as ${ }^{t} q_{i j}=\left.\frac{\partial^{t} F}{\partial^{t} \sigma_{i j}}\right\|_{e_{i j}^{p} \text { fixed }}$
	${ }^{\text {o }} \mathrm{K}_{\mathrm{L}}$ - T.L. formulation	r, s, t	Isoparametric coordinates (two- and
	${ }_{t}^{\text {t }} \underline{L}^{\text {L }}$ - U.L. formulation		three-dimensional solid elements, shell elements).
${ }_{0}^{t} K_{N L},{ }^{\text {t }} \underline{K}_{N L}$	The contribution to the total tangent stiffness matrix arising from the nonlinear part of the GreenLagrange strain tensor.	${ }_{0}^{\mathrm{t}} \underline{\underline{R}}$	Rotation matrix (polar decomposition of ${ }_{0}^{\dagger} \underline{C}$).
	${ }_{0}^{\text {t }} \underline{K}_{N L}-$ T.L. formulation	R	Reference load vector (automatic load step incrementation).
	${ }_{t}^{ \pm} \underline{K}_{N L}$ - U.L. formulation		
		${ }^{\text {th}}$	Applied loads vector, corresponding to time \boldsymbol{t}.

TR Virtual work associated with the applied loads, evaluated at time t.

RNORM,	Reference load used with force tol- erance RTOL (solution of nonlinear equations).
RTOL	Convergence tolerance used to mea- sure convergence of the out-of-bal- ance loads (solution of nonlinear equations).
${ }^{\text {tional degrees of freedom are present. }}$.	

${ }_{0} S_{i j},{ }_{\text {t }}{ }_{\text {ij }}$	Components of increments in the 2nd Piola-Kirchhoff stress tensors: $\begin{aligned} & { }_{o} S_{i j}={ }^{t+\Delta t} S_{i j}-{ }_{0}^{t} S_{i j} \\ & { }^{t} S_{i j}={ }^{t+\Delta t}{ }^{t} S_{i j}-{ }^{t} T_{i j} \end{aligned}$
${ }^{\text {t }}$ S	Matrix containing the components of the 2nd Piola-Kirchhoff stress tensor (T.L. formulation).
${ }_{0}^{\text {t }}$ S	Vector containing the components of the 2nd Piola-Kirchhoff stress tensor (T.L. formulation).
$t, t+\Delta t$	Times for which a solution is to be obtained in incremental or dynamic analysis. The solution is presumed known at time t and is to be determined for time $t+\Delta t$.
$\overline{\text { I }}$	"Effective" time (creep analysis).
T	Displacement transformation matrix (truss element).
Tco	Cut-off period (the smallest period to be accurately integrated in dynamic analysis).

T_{n}	Smallest period in finite element assemblage (dynamic analysis).
${ }^{t} u_{i}$	Total displacement of a point in the ith direction.
${ }^{\text {t }}{ }_{\text {i }}$	Total acceleration of a point in the i th direction (dynamic analysis).
u_{i}	Incremental displacement of a point in the i th direction.
$u_{i}^{\text {s }}$	Components of displacement of a point upon which a traction is applied.
${ }_{0}^{\text {b }} u_{i, j}$	Derivatives of the total displacements with respect to the original coordinates (T.L. formulation).
$\mathrm{ou}_{\text {i, }} \mathbf{j}$	Derivatives of the incremental displacements with respect to the original coordinates (T.L. formulation).
$\mathrm{tu}_{\mathbf{i}, \mathrm{j}}$	Derivatives of the incremental displacements with respect to the current coordinates (U.L. formulation).
u_{i}^{k}	Incremental displacement of nodal point k in the i th direction.
${ }^{\text {t }}{ }_{i}^{\text {k }}$	Tbtal displacement of nodal point k in the i th direction at time t.
$\underline{\text { @ }}$	A vector containing incremental nodal point displacements.
${ }^{\mathrm{t}} \underline{\mathrm{Q}}$	A vector containing total nodal point displacements at time t.
${ }^{\text {t }}$	Vector of nodal point accelerations, evaluated at time t.
' ${ }^{\text {U }}$	Vector of nodal point velocities, evaluated at time t.
${ }^{\text {t }}$	Vector of nodal point displacements, evaluated at time t.
${ }^{\text {d }}$ U	Stretch matrix (polar decomposition of ${ }_{0}^{\mathbf{t}} \mathrm{C} \quad$).
$\underline{v}^{(i)}$	Column vector used in the BFGS method (solution of nonlinear equations).

${ }^{t} \mathrm{~V}$	Volume evaluated at time t.
${ }^{\mathbf{t}} \underline{V}_{n}^{\mathbf{k}},{ }^{\mathbf{t}} \mathbf{V}_{\mathbf{n i}}^{\mathbf{k}}$	Director vector at node k evaluated at time t (shell analysis).
\underline{V}_{n}^{k}	Increment in the director vector at node k (shell analysis).
${ }^{\mathbf{t}} \underline{V}_{1}^{\mathbf{k}},{ }^{\mathbf{t}} \underline{V}_{2}^{\mathbf{k}}$	Vectors constructed so that ${ }^{\mathbf{t}} \underline{V}_{1}^{k},{ }^{\mathbf{t}} \underline{V}_{2}^{k}$ and ${ }^{\mathbf{t}} \underline{V}_{n}^{k}$ are mutually perpendicular (shell analysis).
${ }^{\text {t }} \underline{\mathbf{V}}_{s}^{\mathbf{k}},{ }^{\mathbf{t}} \underline{\mathbf{V}}_{t}^{\mathbf{k}}$	Director vectors in the s and t directions at node k, evaluated at time t (beam analysis).
$\underline{\mathbf{V}}_{\mathbf{s}}^{\mathbf{k}}, \underline{\mathbf{V}}_{\substack{\mathbf{k}}}$	Increments in the director vectors in the s and t directions at node k (beam analysis).
$\underline{w}^{(i)}$	Vector used in the BFGS method (solution of nonlinear equations).
W	Preselected increment in external work (automatic load step incrementation).
${ }_{0}^{t} \mathrm{~W}$	Strain energy density per unit original volume, evaluated at time t (analysis of rubberlike materials).
${ }^{t} W_{P}$	Plastic work per unit volume (elastoplastic analysis).
${ }^{t} \mathbf{x}$	Coordinate of a material particle in the i th direction at time t.
${ }^{t} x_{i}^{k}$	Coordinate of node k in the i th direction at time t.
${ }_{0}^{t} x_{i, j},{ }_{0}^{t} x_{i j}$	Components of the deformation gradient tensor, evaluated at time t and referred to the configuration at time 0 .
${ }_{\mathbf{i}}^{\mathbf{0}} \mathrm{x}_{\mathrm{i}, \boldsymbol{j}},{ }_{\mathbf{0}}^{\mathbf{0}} \underline{X}_{\mathrm{ij}}$	Components of the inverse deformation gradient tensor.

Glossary of Greek Symbols

α	Parameter used in the α-method of time integration. $\alpha=0$ - Euler forward method $\alpha=1 / 2-$ Trapezoidal rule $\alpha=1$ - Euler backward method
α_{k}	Incremental nodal point rotation for node k about the $\underline{\mathrm{V}}_{1}^{\mathrm{k}}$ vector (shell analysis).
${ }^{\text {t }} \alpha$	Coefficient of thermal expansion (thermo-elasto-plastic and creep analysis).
β	Line search parameter (used in the solution of nonlinear equations).
β	Section rotation of a beam element.
β_{k}	Incremental nodal point rotation for node k about the $\underline{\mathrm{V}}_{2}^{k}$ vector (shell analysis).
γ	Transverse shear strain in a beam element.
γ	Fluidity parameter used in viscoplastic analysis.
γ	Related to the buckling load factor λ through the relationship $\gamma=\frac{\lambda-1}{\lambda}$
${ }^{t} \gamma$	Proportionality coefficient between the creep strain rates and the total deviatoric stresses (creep analysis).
$\gamma^{(i)}$	Force vector in the BFGS method.

$\frac{\partial \underline{\underline{U}}}{\partial \underline{U}}$	A square coefficient matrix with entries $\left[\frac{\partial \mathrm{f}}{\partial \underline{U}}\right]_{i j}=\frac{\partial f_{i}}{\partial U_{j}}$ (solution of nonlinear equations).
δ	When used before a symbol, this denotes "variation in."
$\delta_{i j}$	Kronecker delta; $\delta_{i j}= \begin{cases}0 ; & i \neq j \\ 1 ; & i=j\end{cases}$
$\underline{\delta}^{(i)}$	Displacement vector in the BFGS method.
$\Delta \ell$	"Length" used in the constant arc length constraint equation (automatic load step incrementation).
Δt	Time step used in incremental or dynamic analysis.
$\Delta t_{\text {cr }}$	Critical time step (dynamic analysis).
$\Delta \underline{U}^{(\mathrm{i})}$	Increment in the nodal point displacements during equilibrium iterations $\Delta \underline{U}^{(i)}={ }^{t+\Delta t} \underline{U}^{(i)}-{ }^{t+\Delta t} \underline{U}^{(i-1)}$
$\Delta \underline{\bar{U}}$	Vector giving the direction used for line searches (solution of nonlinear equations).
$\Delta \underline{\underline{U}}^{(i)}, \Delta \underline{\underline{U}}$	Intermediate displacement vectors used during automatic load step incrementation.

$\Delta \underline{X}^{(k)}$	Increment in the modal displacements (mode superposition analysis).
$\Delta \tau$	A time step corresponding to a subdivision of the time step Δt (plastic analysis).
${ }_{0} \varepsilon_{i j}$	Components of Green-Lagrange strain tensor, evaluated at time t and referred to time 0 .
${ }_{\mathrm{o}} \varepsilon_{i j}$	Components of increment in the GreenLagrange strain tensor: $o \varepsilon_{i j}={ }^{t}+\Delta t \varepsilon_{i j}-{ }_{0}^{t} \varepsilon_{i j}$
${ }_{1}^{1} \varepsilon_{i j}^{a}$	Components of Almansi strain tensor.
η, ξ, ζ	Convected coordinate system (used in beam analysis).
${ }_{0} \eta_{i j}$	The "nonlinear" part of the increment in the Green-Lagrange strain tensor.
θ_{k}	Nodal point rotation for node k (twodimensional beam analysis).
θ_{i}^{k}	Nodal point rotation for node k about the x_{i} axis (beam analysis).
${ }^{t} \theta$	Temperature at time t (thermo-elasto-plastic and creep analysis).
${ }^{\text {t }}$ K	Variable in plastic analysis.
λ	Lamé constant (elastic analysis). $\lambda=\frac{E v}{(1+\nu)(1-2 \nu)}$
λ	Scaling factor used to scale the stiffness matrix and load vector in linearized buckling analysis.
${ }^{t} \lambda$	Load factor used to obtain the current loads from the reference load vector: ${ }^{t} \underline{R}={ }^{t} \lambda \underline{R}$ (automatic load step incrementation).

${ }^{t} \lambda$	Proportionality coefficient in calculation of the plastic strain increments (plastic analysis).
μ	Lamé constant (elastic analysis). $\mu=\frac{E}{2(1+\nu)}$
ν	Poisson's ratio.
$\nu_{\text {ab }}$	Poisson's ratio referred to the local coordinate system a-b (orthotropic analysis).
Π	Total potential energy (fracture mechanics analysis).
${ }^{\mathbf{t}}$	Mass density, evaluated at time t.
${ }^{\text {t }}{ }_{\text {ij }}$	Components of stress tensor evaluated at time t in M.N.O. analysis.
${ }^{\prime} \overline{\boldsymbol{\sigma}}$	Effective stress (used in creep analysis) ${ }^{t} \bar{\sigma}=\sqrt{\frac{3}{2}{ }^{t} s_{i j}{ }^{t} s_{i j}}$
${ }^{\text {t }} \boldsymbol{\sigma}_{\mathbf{y}}$	Yield stress at time t (plastic analysis).
σ_{y}	Initial yield stress (plastic analysis).
\sum_{m}	Denotes "sum over all elements."
${ }^{\mathbf{t}} \underline{\underline{\underline{\Sigma}}}$	Vector containing the components of the stress tensor in M.N.O. analysis.
T	(as a left superscript)-Denotes a time.
	Examples
	${ }^{\top} \underline{K},{ }^{\top} \underline{R}$ - linearized buckling analysis ${ }^{\tau} \underline{K}$ - solution of nonlinear equations
${ }^{\text {' }}{ }^{i j}$	Components of Cauchy stress tensor evaluated at time t.
${ }^{\text {t }}$	Matrix containing the components of the Cauchy stress tensor (U.L formulation).

$\underline{t} \hat{\underline{T}}$	Vector containing the components of the Cauchy stress tensor (U.L. formulation).
$\underline{\phi}$	A vector containing the nodal point displacements corresponding to a buckling mode shape.
Φ_{i}	A vector containing the nodal point displacements corresponding to the i ith mode shape.
ω_{i}	Natural frequency of the ith mode shape.
$\omega_{n}^{(m)}$	Largest natural frequency of element m.
$\left(\omega_{n}^{(m)}\right)_{\max }$	Largest natural frequency of all individual elements.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures

Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

