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Mode superposition:

• The modes of vibration change due to
the nonlinearities, however we can
employ the modes at a particular time
as basis vectors (generalized
displacements) to express the
response.

• This method is effective when, in
nonlinear analysis,

- the response lies in only a few
vibration modes (displacement
patterns)

- the system has only local
nonlinearities
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The governing equations in implicit time
integration are (assuming no damping
matrix)
M HLltO(k) + TK ~U(k) = HLltR _ HLltF(k-1)
- - -

Let now T = 0, hence the method of
solution corresponds to the initial stress
method.

Using



The modal transformation gives

H.:1tX(k) + 0 2 ax(k) = <I>T (H.:1tR _ H.:1tF(k-1»)
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where

n2 = [W~"W~]
<I> = ~r ... ~s]

.
equations cannot be solved
individually over the time
span
Coupling!

Typical problem:

~~========:::::::D!I
~

Pipe whip: Elastic-plastic pipe
Elastic-plastic stop

• Nonlinearities in pipe and stop. But
the displacements are reasonably well
contained in a few modes of the
linear (initial) system.
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Substructuring

• Procedure is used with implicit time
integration. All linear degrees of
freedom can be condensed out prior
to the incremental solution.

• Used for local nonlinearities:
Contact problems
Nonlinear support problems

p
-0

_0

o
Slip
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Example:

Ten story
building Finite element

model

• -"master" node

• - substructure
internal node

Substructure
model



/
t A

K

master dot

substructure
internal dot

master dot

substructure
internal dot

master dot
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Here

t
A

( 4) tK = K + Llt2 M + Knonlinear

~ toil mass~1I nonlinear stiffness
I matrix effects
all linear
element contributions

A t
K + K nonlinear- -

Transparency
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After condensing out all substructure
internal degrees of freedom, we obtain
a smaller system of equations:

~entries from condensed

1_.........7rUbstruclures

master dof

Major steps in solution:

• Prior to step-by-step solution,
establish Bfor all mass and constant
stiffness contributions. Statically
condense out internal substructure
degrees of freedom to obtain Be.
We note that

t A A t
.!Sc = .!SC + .!Snonlinear

condensed i. all nonlinear effects
7 A 4

from K= K+ .lt2 M

alllinearJ "-total mass matrix
element contributions



• For each time step solution (and each
equilibrium iteration):

- Update condensed matrix, Ke, for
nonlinearities.

- Establish complete load vector for all
degrees of freedom and condense out
substructure internal degrees of freedom.

- Solve for master dof displacements,
velocities, accelerations and calculate all
substructure dof disp., veL, ace.

The substructure internal nodal disp., veL,
ace. are needed to calculate the complete
load vector (corresponding to all dof).

Solution procedure for each time step(and iteration):

tu t+4tU-, -,
tU' t+4t(j
-, • t+4tRA _ t+4tRA _ t+41U _ -,
.. _ _c _c t+4tU"tu
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substructure
degrees of
freedom
condensed
out

using
condensed
effective
stiffness
matrix tKe
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Example: Wave propagation in a rod
Transparency

14-13

R

Uniform, freely floating rod

/

R

1000 N+------

L = 1.0 m
A = 0.01 m'Z.
p = 1000 kg/m3

E = 2.0 x 109 Pa

time

Transparency
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Consider the compressive force at a
point at the center of the rod:

-.B-
1
' .5 'I' .5 'I

t* = time for stress wave
to travel through
the rod1000 N

Compressive
force

I
A

The exact solution for the force at
point A is shown below.

1....-_--+-__\--_-+-_--+__ time
1/2 t* t* % t* 2 t*



We now use a finite element mesh of
ten 2-node truss elements to obtain
the compressive force at point A.

All elements uniformly spaced
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R • •

Central difference method:

• The critical time step for this problem is

Llt = L Ic = t* ( 1 )
cr e number of elements

Llt > Lltcr will produce an unstable
solution

• We need to use the inital conditions
as follows:

a
MOO~=OR

~
0·· _ °HUj -

mjj

Transparency
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exact

/

1500

• Using a time step equal to atcr• we obtain
the correct result: • For this special

case the exact
solution is obtained

Finite elements

~100Q
Compressive
force (N) 500

Transparency
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t*

-500

Transparency
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• Using a time step equal to ! atcr , the
solution is stable, but highly
inaccurate.

Finite elements
1500

1000
Compressive
force (N) 500..

-500.

time



1500

1000
Compressive
force (N) 500

Now consider the use of the
trapezoidal rule:

• A stable solution is obtained with
any choice of at.

• Either a consistent or lumped
mass matrix may be used. We
employ a lumped mass matrix in
this analysis.

Trapezoidal rule, dt = dterlcDM' .i.nitial
conditions computed using MOU = OR.

- The solution is inaccurate.
Finite element solution,

/"10 element mesh
AA/

AA exact solution

A A/
A

Topic Fourteen 14-13
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-500

t* 2t* time
AA



14-14 Nonlinear Dynamic Response - Part 11

1500

1000
Compressive
force (N)

500

Transparency
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Trapezoidal rule, dt = dtcrlcDM' zero
initial conditions.

- Almost same solution is obtained.
Finite element solution,

/ 10 element mesh

(!) (!) (!) exact solution
(!) '" ~ f

(!)(!)
(!

(!)(!)
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t*

-500

Trapezoidal rule, dt = 2dtcrlcDM
- The solution is stable, although
inaccurate.

(!)2t* time
(!)

1500
Finite element solution,
/10 element mesh

.t> at = 2atcrlcDM
1000

Compressive
force (N)

500

o ....t>

-500

t*

.t>
exact solution
~

I!:>

2t* time
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Trapezoidal rule, at = ! atcrlCDM
Transparency
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~

~

~<b.

t* ~~ 2t* time
~

Finite element solution,
er10 element mesh

~ / exact solution
~~ Ao.~~ ~
~ ~ ~ ~ ~~

~ ~ ~

<
~

Ol~",¢ll-~L~-L_--+-__--I._~....... _

1500

1000
Compressive
force (N) 500

-500

The same phenomena are observed when
a mesh of one hundred 2-node truss
elements is employed.
- Here ~tcr = t*/100 exact solution; finite

Finite element element solution,
solution, .::It = ! .::lte., .::It = .::ltc., central

1500 central diffefrJrwenMCMeWtMfWrM-.d~iff/erence methodmethod

1000

Compressive
force (N) 500

Transparency
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O+-----J.:L---+---..JH-lMIlIAAi'\r---
t*

-50
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Trapezoidal rule, at = atcrlCDM

Finite element solution, 100 element mesh

1500 /

O,+-----"'-L-----t------'"t-++t-tt1Ht----
time

-50

Now consider a two-dimensional model
of the rod: tz

1 0 element 5 L- y
. m./>/ .

For this mesh, atcr =P t*/(10 elements)
because the element width is less than
the element length.



If At = t*/(10 elements) is used, the solution
diverges

-In element 5,

IT 1>- (1000 N)
zz 0.01 m2

at t = 1.9 t*

Example: Dynamic response of three
degree-of-freedom system
using central difference method

Topic Fourteen 14-17
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kL = 1 Ibf/ft
m = 1 slug

°X1 = °X2 = °X3 = 0

°*1 = 0.555 ft/sec
°*2 = 1.000 ft/sec
°*3 = 1.247 ft/sec

FomeL{:
0.95

Displacement Ix2 - x3 1

(~tcrit)linear = 1.11 sec
(~terit)nonlinear = 0.14 sec
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Results: Response of right mass

3

D
' 2
ISp.

(ft) 1

X1 0 HJ--:-':.-----i~:---___='::n--:--~-

t(sec)
-1

-2

-3
.: .:1t = 0.05 sec
0: .:1t = 0.15 sec

Response of center mass:
Transparency
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.:1 =0.05 sec.

.:1 = 0.15 sec.
.:
O'

2
Disp.
(ft) 1

X2 0 1--If....L-- ~-----J~--....I...--

t(sec)
-1

-2



Response of left mass:

Disp.
(ft)

X3
20'

~\,
\:>,

.... 0--

t(sec)
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.: d=0.05 sec.
0: d=0.15 sec.

Force (Ibf) in center truss:

TIME dt=0.05 dt=0.15
9.0 -0.666 -0.700

12.0 -0.804 -0.877
15.0 0.504 0.503
18.0 0.648 -0.100
21.0 -0.132 -0.059
24.0 -0.922 0.550

Transparency
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Transparency
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Example: 10 story tapered tower

3.2 m
--1~

Pressure
induced
by
blast

Applied load (blast):

32 m

Girder properties:
E=2.07x 1011 Pa
v=0.3
A=0.01 m2

As =0.009 m2

1=8.33x 10-5 m4

p = 7800 kg/m3

Transparency
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Force
per
unit
length
(N/m)

1000

o+---+-----+---+--~---
o 50 100 150 200

time (milliseconds)



Purpose of analysis:

• Determine displacements,
velocities at top of tower.

• Determine moments at base of
tower.

We use the trapezoidal rule and a
lumped mass matrix in the following
analysis.

We must make two decisions:

• Choose mesh (specifically the
number of elements employed).

• Choose time step ~t.

These two choices are closely related:

The mesh and time step to be used
depend on the loading applied.

Topic Fourteen 14·21
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Transparency
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Some observations:

• The choice of mesh determines
the highest natural frequency (and
corresponding mode shape) that is
accurately represented in the finite
element analysis.

• The choice of time step deter
mines the highest frequency of
the finite element mesh in which
the response is accurately inte
grated during the time integration.

• Hence, it is most effective to
choose the mesh and time step
such that the highest frequency
accurately "integrated" is equal to
the highest frequency accurately
represented by the mesh.

• The applied loading can be rep
resented as a Fourier series which
displays the important frequencies
to be accurately represented by
the mesh.



Force per
unit length
(N/m)

Consider the Fourier representation of
the load function:

f(t) = ~o +I (ancos(2'ITfnt) +bnsin(2'ITfnt»
n=1

Including terms up to

case 1: fn= 17 Hz

case 2: fn= 30 Hz

The loading function is represented as
shown next.

Fourier approximation including terms
up to 17 Hz:

/APPlied load

/FOUrier approximation

o 100 200
time (milliseconds)

Thpic Fourteen 14-23
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Transparency
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Transparency
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Fourier approximation including terms
up to 30 Hz:

2000
Force per
unit length
(N/m)

1000

100 200
time (milliseconds)

• We choose a 30 element mesh,
a 60 element mesh and a 120
element mesh. All elements are
2-node Hermitian beam elements.

30 elements 60 elements 120 elements
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Determine "accurate" natural frequen- .
cies represented by 30 element mesh:

From eigenvalue solutions of the 30
and 60 element meshes, we find

Transparency
14-43

rate

curate

mode natural frequencies (Hz)
number 30 element mesh 60 element mesh

1 1.914 1.914
2 4.815 4.828 accu
3 8.416 8.480

14 12.38 12.58
5 16.79 17.27
6 21.45 22.47

1
7 26.18 28.08
8 30.56 29.80

inac

Calculate time step:

Tco = 117 Hz = .059 sec

~t= 21 Tco = .003 sec

• A smaller time step would accurately
"integrate" frequencies, which are not
accurately represented by the mesh.

• A larger time time step would not
accurately "integrate" all frequencies
which are accurately represented by
the mesh.

Transparency
14-44



14-26 Nonlinear Dynamic Response - Part II

Transparency
14-45

Determine "accurate" natural frequen
cies represented by 60 element mesh:

From eigenvalue solutions of the 60
and 120 element meshes, we find

rate

ate

mode natural frequencies (Hz)
number 60 element mesh 120 element mesh

5 17.27 17.28
6 22.47 22.49 accur

7 28.08 28.14
8 29.80 29.75
9 32.73 33.85

10 33.73 35.06
11 36.30 38.96 inaccu

Calculate time step:
Transparency

14-46 Teo = 31 Hz= .033 sec

Llt == 2~ Teo = .0017 sec

• The meshes chosen correspond to
the Fourier approximations discussed
earlier:

30 element mesh _.---" Fourier approximation
including terms up
to 17 Hz.

60 element mesh _.-_a Fourier approximation
including terms up
to 30 Hz.



Pictorially, at time 200 milliseconds,
we have (note that the displacements
are amplified for visibility):

Topic Fourteen 14-27
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30 elements 60 elements

Pictorially, at time 400 milliseconds,
we have (note that the displacements
are amplified for visibility):

Transparency
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30 elements 60 elements
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Consider the moment reaction at the
base of the tower:

40

20

M
(KN-m)

500250

time (milliseconds)

Ol-+----------if---+-------+--

- : 30 elements
/VVV: 60 elements

-20

-40

Transparency
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Consider the horizontal displacement
at the top of the tower:

~6IJ .lements
r u

.06 11.04
u

30 .i.1s(m)
.02

0
250 500

-.02 time (milliseconds)

-.04

-.06



Consider the horizontal velocity at the
top of the tower:

'Ibpic Fourteen 14·29
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.6

V
(m/s)

-.2

-.4

-.6

Comments:

IV

11

• The high-frequency oscillation
observed in the moment reaction
from the 60 element mesh is
probably inaccurate. We note that
the frequency of the oscillation is
about 110Hz (this can be seen
directly from the graph).

• The obtained solutions for the
horizontal displacement at the top
of the tower are virtually identical.

Transparency
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Example: Simple pendulum undergoing
large displacements

~ length = 304.43 cm

tip
/"mass = 10 kg

g = 980 cm/sec2

1
Initial conditions:

°0 = 900

°0 = 0

One truss element with tip concentrated
mass is employed.

Transparency
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Calculation of dynamic response:

• The trapezoidal rule is used to
integrate the time response.

• Full Newton iterations are used to
reestablish equilibrium during every
time step.

• Convergence tolerance:
ETOL= 10- 7

(a tight tolerance)
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Choose Llt = 0.1 sec. The following
response is obtained: Transparency

14-55

6 time (sec)

last obtained solution
Solution procedure
failed during next

'i~ep
90

-90

-45

e 45

(degrees)
o+---!'r--+---P--+----.:::I---+---

The strain in the truss is plotted:

• An instability is observed.
Transparency
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time
(sec)

2

5x10~5

strain

-10x10- 5
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• The instability is unchanged when
we tighten our convergence toler
ances.

• The instability is also observed
when the BFGS algorithm is
employed.

• Recall that the trapezoidal rule is
unconditionally stable only in linear
analysis.

Choose at = 0.025 sec, using the
original tolerance and the full Newton
algorithm (without line searches).

• The analysis runs to completion.

pFinite element solution

6 4
(degrees)

0
time

-45 (sec)

-9
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The strain in the truss is stable: Transparency
14-59

strain

3x10- 6

2x 10-6

finite element solution,
At=.025 sec

1

4
o+----!IL..-----+l~---lL-_fL_-><--___t_>''----

8 12 time (sec)

1 X 10-6

It is important that equilibrium be accurately
satisfied at the end of each time step: Transparency

14·60
Finite element solution, at = .025 sec.,
equilibrium iterations used as
described above.

f90

-45

-90

6 45
(degrees) time (sec)

O-l---lf--~"'I=-b-==+-~+=-+=I=:---12"\
Finite element solution,
at = .025 sec., no
equilibrium iterations
used.
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5x10- 5

Transparency
14-61

Although the solution obtained without
equilibrium iterations is highly
inaccurate, the solution is stable:

Finite element solution, At=O.025 sec.,

10 x 10- 5 no equilibrium iterations used.

strain f Finite element solution, 8t=O.025 sec.,
equilibrium iterations used as
described above.

4 8 12 time (sec)

Transparency
14-62

Example: Pipe whip analysis:

360 P=6.57x 105 Ib

~ 2775

=~OxJ30
~~-z-diameter

not drawn restraint 5.75
to scale

all dimensions in inches

• Determine the transient response
when a step load P is suddenly
applied.



Finite element model:

Six Hermitian beam elements

~>---".--••-----<._--4.l---".-~ ~~~ent

• The truss element incorporates a
3 inch gap.

Material properties:
Pipe: E = 2.698 x 107 psi

v=0.3
CTy=2.914x 104 psi

~~8~2 x 10- 3 S.IU
3
9 = 7.18 x 10- 4 Ibf~S~C2

In In

Restraint: E = 2.99 x 107 psi
CTy= 3 .80 x 104 psi
ET=O

Topic Fourteen 14-35
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The analysis is performed using

Mode superposition (2 modes)

Direct time integration

We use, for each analysis,

Trapezoidal rule

- Consistent mass matrix

A convergence tolerance of
ETOL = 10-7 is employed.

Eigenvalue solution:

Mode 1, natural frequency = 8.5 Hz

Mode 2, natural frequency = 53 Hz



Choice of time step:

We want to accurately integrate the
first two modes:

at == 2~ Tco = 2~ ((freqUency ~f mode 2))

=.001 sec

Note: This estimate is based solely on a linear
analysis (Le, before the pipe hits the
restraint and while the pipe is still elastic).

Determine the tip displacement:

'Ibpic Fourteen 14-37
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time Transparency
(milliseconds) 14-68

0 2 4 6 8 10
0

~
~

tip -2
(!)
~

disp. (!) Gap
(in) (!)

-4 ~
(!)
~

~
~ (!)

C!l - mode superposition ~

-6 ~ - direct integration
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Determine the moment at the built-in
end of the beam:

time
(milliseconds)

0 2 4 6 8 10
Moment 0
(Ib-in) (!) ~

(!)

-1 X 107
(!) ~

~

-2X 107
(!) ~ (!)

~

-3x 107 (!) (!)
(!) (!)

~~

-4 X 107

(!) - mode superposition
~ - direct integration



r
~ii•• 12, 5,n2.1 I

r-- ....~
EI, constant
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l

l

l

L • 38 9 In

d • 0.1 in

-x

lit'
~H~

W
Analysis of CAD housing with lower support

TIME ISECONlS
TIP

DEFLECTION
(INCHES) 0,.--_~~__~=--_~O.o¥-,3!..-_~:!..-_~~_~~_~0.07

-0.02

-0.04

- PETERSON AND BATHE
-0.06

o DIRECT INTEGRATION

-0.08 '" MODE 5UPERPOS ITION
12 MODES)

-0.10

CRD housing tip deflection

Slide
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p

w
R = 22.27 in.
h = 0.41 in.
e= 26.67"

E = 1.05 X 107 Ib/in2

v = 0.3
cry = 2.4 X 104 Ib/in2

ET = 2.1 X 105 Ib/in2

p = 9.8 X 10-2 Ib/in3

Slide
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Ten a-node axisymmetric els.
Newmark inte (8 = 0.55, (X = 0.276)
2 x 2 Gauss integration ~L-
consistent mass 600Ib/in~

~t = 10f-Lsec, T.L. 0 TIME

Spherical cap nodes under uniform pressure loading

TIME - msec

o 0·2 0·4 0.6 0.8 1.0
~---r--.-------,---,------,

DEFLECTION
W.-Inches

0·02

0.04

0·06

0.08

Dynamic elastic-plastic response of a spherical cap.
p deformation independent



TIME - msec

o 0·2 0·4 0·6 0·8 1-0
~--.-------,--.-----.------,
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Slide
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DEFLECTION
Wo- inches

0·02

0·04

0·06

Newmark integration
(1= D.5, llC- 0.25)

0·08

Response of the cap using consistent and lumped
mass idealization

TIME - msec

°..,....-_0.:,..::.2__0::.,..4_--=0.,...6::....---=.0...:8:...--.:.,1.0

DEFLECTION

We-IncheS

0·02

0·04

0·06

0·08

Nagarajan
& Popov "

Consistent mass
Newmark integration

r:5"=O~)

~
'.'\.....

Slide
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Effect of numbers of Gauss integration points on the
cap response predicted
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BLIND FLANGEJ ~ULSE GUN 3-Inch FLEXIBLE NI 200 PIPE~ \

m P: r~~p,B ~

1._-----3---'nc-"~:I-GI~D-P-IP-E ~_"*,,.,J J
NICKEL 200

E= 30'10' PSI
ET= 73.7 110 4 PSI
• • 030
P = B.3I.10- 4 SLUG;FT
ITo = 12.B'103 PSI IN

WATER
K = 32 liO' PSI
P = 9.36 • 10-\~FT

Slide
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Analysis of fluid-structure interaction problem
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Topic 15

Use of Elastic
Constitutive
Relations in Total
Lagrangian
Formulation

• Basic considerations in modeling material response

• Linear and nonlinear elasticity

• Isotropic and orthotropic materials

• One-dimensional example, large strain conditions

• The case of large displacement/small strai~ analysis,
discussion of effectiveness using the total Lagrangian
formulation

• Hyperelastic material model (Mooney-Rivlin) for analysis
of rubber-type materials

• Example analysis: Solution of a rubber tensile test
specimen

• Example analysis: Solution of a rubber sheet with a hole

6.4, 6.4.1

The solution of the rubber sheet with a hole is given in

Bathe, K. J., E. Ramm, and E. 1. Wilson, "Finite Element Formulations
for Large Deformation Dynamic Analysis," International Journal for
Numerical Methods in Engineering, 9, 353-386, 1975.



USE OF CONSTITUTIVE
RELATIONS

• We developed quite general kinematic
relations and finite element
discretizations, applicable to small or
large deformations.

• To use these finite element
formulations, appropriate constitutive
relations must be employed.

• Schematically

K = ( BT C B dV, F = ( BT T dVJv \ Jv .J.
constitutive relations enter here

For analysis, it is convenient to use the
classifications regarding the magnitude
of deformations introduced earlier:

• Infinitesimally small displacements

• Large displacements / large rotations,
but small strains

• Large displacements / large rotations,
and large strains

The applicability of material descriptions
generally falls also into these
categories.
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15-4 Elastic Constitutive Relations in T.L.F.
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Recall:

• Materially-nonlinear-only (M.N.O.)
analysis assumes (models only)
infinitesimally small displacements.

• The total Lagrangian (T.L.) and
updated Lagrangian (U.L.)
formulations can be employed for
analysis of infinitesimally small
displacements, of large displacements
and of large strains (considering the
analysis of 2-D and 3-D solids).

~ All kinematic nonlinearities are
fully included.

We may use various material descriptions:

Material Model

Elastic

Hyperelastic
Hypoelastic
Elastic-plastic

Creep
Viscoplastic

Examples

Almost all materials, for small
enough stresses
Rubber
Concrete
Metals, soils, rocks under high
stresses
Metals at high temperatures
Polymers, metals



ELASTIC MATERIAL BEHAVIOR:

In linear, infinitesimal displacement,
small strain analysis, we are used to
employing

Topic Fifteen 15-5
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stress +

dO"

Linear elastic stress-strain
relationship

\1 = Ete

dO" = E de

strain

For 1-0 nonlinear analysis we can use

stress Nonlinear elastic
stress-strain
relationship

slope Ie l<r = tc te
t
e

strain not constant

d<r = C de

Transparency
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stress
In practice, a
piecewise linear
description is
used

strain



15-6 Elastic Constitutive Relations in T.L.F.
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We can generalize the elastic material
behavior using:

te tc t
QUiJ. = 0 ijrs oErs

doSt = oCijrs doErs
This material description is frequently
employed with

• the usual constant material moduli
used in infinitesimal displacement
analysis

• rubber-type materials

Use of constant material moduli, for an
isotropic material:

JCijrs = oCiys = A. 8t 8rs + fJ.(8 ir 8js + 8is 8y)

Lame constants:

A.= Ev E
(1 + v)(1 - 2v) , fJ. = 2(1 + v)

Kronecker delta:

., = {a; i ~ j-
81t 1; i = j-
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Examples:

2-D plane stress analysis:
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1 v o

o

1 - v

1v

o 0

/ , (,2 + Ie )
corresponds to 0812 = J.L OE12 0e-21

E
Oc = 2- 1 - v

2-D axisymmetric analysis:

v 0 v
1 - v 1 - v

v 1 0 v
E(1 - v) 1 - v 1 - v

Q = (1 + v)(1 - 2v)
0 0

1 - 2v
02(1 - v)

v v
01 - v 1 - v
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15-8 Elastic Constitutive Relations in T.L.F.

local coordinate -1
system a-b~e =

Transparency
15-11

For an orthotropic material, we also
use the usual constant material moduli:
Example: 2-D plane stress analysis

1 Vab 0
Ea - Eb

1 0
Eb

a sym.

(1 + v)(1 - 2v)

f

Transparency
15-12

Sample analysis: One-dimensional
problem:

Material constants E, v

A

E (1 - v)

°L
Constitutive relation: dS11 = EdE 11



Sample analysis: One-dimensional
problem:

Material constants E, v

In tension:

A

~
E (1 - v)

t~ (1 + v)(1 - 2v)

0L J
Constitutive relation: 6S11 = E6E 11

Sample analysis: One-dimensional
problem:

Material constants E, v

In tension:

In compression: A

IT E(1-v)
ILl t~ (1 + v)(1 - 2v)

I-----=-0L---.:...--- f
t - t

Constitutive relation: 0811 = E oE 11

Topic Fifteen 15-9
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15-10 Elastic Constitutive Relations in T.L.F.
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We establish the force-displacement
relationship:

t t 1 (t )2oEn = OU1,1 + 2 OU1,1

tL _ °L

-----oc-

Using tL = °L + t~, riSn = EriE 11, we
find

°L
This is not a realistic material
description for large strains.



• The usual isotropic and orthotropic
material relationships (constant E, v,
Ea , etc.) are mostly employed in
large displacement / large rotation, but
small strain analysis.

• Recall that the components of the
2nd Piola-Kirchhoff stress tensor and
of the Green-Lagrange strain tensor
are invariant under a rigid body
motion (rotation) of the material.

- Hence only the actual straining
increases the components of the
Green-Lagrange strain tensor and,
through the material relationship, the
components of the 2nd Piola
Kirchhoff stress tensor.

- The effect of rotating the material is
included in the T.L. formulation,

tiF = f. tisl tis °dV
V'T~

includes invariant under a
rotation rigid body rotation

Thpic Fifteen 15-11
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15-12 Elastic Constitutive Relations in T.L.F.
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Pictorially:

01::22

•
~

r

1 ..-

..... "01::21

1 f j -61::1101::12.
Deformation to state 1
(small strain situation)

Rigid rotation from
state 1 to state 2

Transparency
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For small strains,
1 1 1 1
OE11 , OE22 , OE12 = OE21 « 1,
1S 1C 1o i} = 0 ijrs oE rs ,

a function of E, v

6Si} . 17i}

Also, since state 2 is reached by a
rigid body rotation,

2 1 2S 18OEi} = oEy. , 0 i} = 0 i}l

27 = R 17 RT

"--"'

rotation matrix



Applications:

• Large displacement / large rotation but
small strain analysis of beams, plates
and shells. These can frequently be
modeled using 2-D or 3-D elements.
Actual beam and shell elements will
be discussed later.

• Linearized buckling analysis of
structures.

Topic Fifteen 15-13
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Frame analysis:

Axisymmetric
shell:

2-D
/ plane stress

elements

2-D
/ axisymmetric

elements
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15-14 Elastic Constitutive Relations in T.L.F.

doSi} = oCyrs doErs
--s---- Ii ciw

t t
aOCi}aOCrs
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General shell:

3-D /
continuum
elements

Hyperelastic material model:
formulation of rubber-type materials

t ariw
OSi} = -t-

aoEij- t t
---S- oC iys OCrs

where

ciw = strain energy density function (per
unit original volume)



Rubber is assumed to be an isotropic
material, hence

dw = function of (11 , 12 , 13)

where the Ii'S are the invariants of the
Cauchy-Green deformation tensor (with
components dC~):

11 = Jc;;

12 = ~ (I~ - JCij JC~)

b = det (dc)

Example: Mooney-Rivlin material law

Jw = C1 (11 - 3) + C2 (12 - 3)
'-' '-'

material constants

with
b = 1-s-incompressibility constraint

Note, in general, the displacement
based finite element formulations
presented above should be extended to
include the incompressibility constraint
effectively. A special case, however, is
the analysis of plane stress problems.
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15-16 Elastic Constitutive Relations in T.L.F.
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Special case of Mooney-Rivlin law:
plane stress analysis

time 0 time t
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For this (two-dimensional) problem,

JC11 JC12 0

Jc = JC21 JC22 0

o 0 JC33

Since the rubber is assumed to be
incompressible, we set det (JC) to 1 by
choosing

tc 1
033= t t t t(OC11 OC22 - OC12 OC21 )



We can now evaluate 11, 12 :

11 = dC11 + dC22 + Cc tc 1 tc tC)o 11 0 22 - 0 12 0 21

1 tc tc dC11 + dC22
2=0 110 22+(tC tc tc tC)o 11 0 22 - 0 12 0 21

1 (tC)2 1 (tc 2- 2 0 12 - 2 0 21 )

The 2nd Piola-Kirchhoff stresses are

t aJw aJw ( remember J
OSii. = ateo = 2 atc JCiL = 2 JEiL + 8r

I' oc.. y. 0 Y. ir ir

= 2 :JCij- [C, (I, - 3) + Co (i:, - 3)]

- 2 C al1 + 2 C al2
- 1 ----r--C 2 ----r--Cao y. ao y.
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15-18 Elastic Constitutive Relations in T.L.F.
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Performing the indicated differentiations
gives

Transparency
15-32

This is the stress-strain relationship.

We can also evaluate the tangent
constitutive tensor oC ijrs using

_ a2 Jw
Oc.·I/rs - at e .. ate

OVI} Ovrs

a2I1 a2h
= 4 C1 t t + 4 C2 t t

~C~~Cffi ~C~~Cffi

etc. For the Mooney-Rivlin law



Example: Analysis of a tensile test
specimen:

I· 30.5

Mooney-Rivlin constants:

C1 = .234 N/mm2

C2 = .117 N/mm2

thickness = 1 mm

J..37
·1

'Thpic Fifteen 15-19
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All dimensions in millimeters

Finite element mesh: Fourteen a-node
elements Transparency
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Gauge~
length I

Constrained
displacements

"""'t---i

L
t1 R
2'2



15·20 Elastic Constitutive Relations in T.L.F.

Results: Force -deflection curves
Transparency

15-35
5

4

Applied 3
load
(N) 2

1

Gauge
response--........

Total
response~

10 20 30
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Extension (mm)

Final deformed mesh (force = 4 N):

b t +d¥ to j I; ;
\~

/
Deformed
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Analysis of rubber sheet with hole
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15·22 Elastic Constitutive Relations in T.L.F.
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W[in)

Static load-deflection curve for rubber sheet with hole
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Deformed configuration drawn to scale of
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Topic Fifteen 15-23

Slide
15-5

I(sec]0.20/

~~-_///
0.12

B

0.080.04

P (Ib)

"C,
~/-10M

At = 0.0015 sec /--if
/ \

/ \
/ \

w[in)
'0

Displacements versus time for rubber
sheet with hole, T.L. solution



Contents:

Textbook:

Example:

Topic 16

Use of Elastic
Constitutive
Relations in
Updated
Lagrangian
Formulation

• Use of updated Lagrangian (U.L.) formulation

• Detailed comparison of expressions used in total
Lagrangian (T.L.) and V.L. formulations; strains,
stresses, and constitutive relations

• Study of conditions to obtain in a general incremental
analysis the same results as in the T.L. formulation, and
vice versa

• The special case of elasticity

• The Almansi strain tensor

• One-dimensional example involving large strains

• Analysis of large displacement/small strain problems

• Example analysis: Large displacement solution of frame
using updated and total Lagrangian formulations

6.4, 6.4.1

6.19



SO FAR THE USE OF
THE T.L. FORMULATION

WAS IMPLIED

Now suppose that we wish to use the
U.L. formulation in the analysis. We
ask

• Is it possible to obtain, using the U.L.
formulation, identically the same
numerical results (for each iteration)
as are obtained using the T.L.
formulation?

In other words, the situation is

Program 1

Topic Sixteen 16·3
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• Only T.L. formulation
is implemented

- Constitutive relations are

JSij- = function of displacements

doSij- = oCijrs doErs

Information obtained from physical
laboratory experiments.

P

~
~

Program 1 results



16-4 Elastic Constitutive Relations in u'L.F.
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Program 2 Question:
1-------------1

• Only U.L. formulation How can we obtain
is implemented with program 2

- Constitutive relations are identically the same
t'Tij. = ~ CD results as are
dtSij. = ~ ® obtained from

'--- ----' program 1?

Transparency
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To answer, we consider the linearized
equations of motion:

~v OCijrS oers 80ei~°dV +~v JSijo80'T)i~OdV]

~
T.L.

_ t+~t t 0- m- 0v OSi~ 80ei~ dV



Terms used in the formulations:

T.L. U.L.
formulation formulation Transformation

t
fc °dV 1tdV °dV = oP tdV
°v tv P

t t
Oeij, OT)i} teij' tTl i}

Oei} = OXr,i OXs,} ters
t tOT)i} = OXr,i OXs,} tT)rs

OOeij, OOT)i} Oteij, OtT) i}
OOei} = JXr,i JXS ,} Oters

OOT)i} = JXr,i JXS ,} OtT)rs

Derivation of these kinematic
relationships:

A fundamental property of JCi} is that

JCi} dOXi dOx} = ~ (CdS)2 - (OdS)2)

Similarly,

t+dJci} dOXi dOx} = ~ ((t+dtds)2 - (OdS)2)

and

tCrs dXr dtxs = ~ ((t+dtds)2 - CdS)2)

Topic Sixteen 16-5
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16-6 Elastic Constitutive Relations in u'L.F.
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timeD
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Fiber dO~ of length ods moves to
become dt~ of length tds.

Hence, by subtraction, we obtain

OCi}doXi dOx} = tCrs dtxr dtxs

Since this relationship holds for
arbitrary material fibers, we have

t tOCi} = OXr,i OXs,pCrs



Now we see that
t t t t

oe~ + o'T)~ = OXr,i OXs,} ters + OXr,i OXS ,} t'T)rs

Since the factors 6Xr,i 6Xs,~ do not
contain the incremental displacements
Ui, we have

ttl" .
oe~ = OXr,i oXs,pers ~ Inear In Ui

t t d t" "
oTJ~ = OXr,i oXsJ tTJrs ~ qua ra IC In Ui

In addition, we have

oOei} = 6Xr,i 6Xs,} oters

OOTJi} = 6Xr,i 6Xs,} OtTJrs

These follow because the variation is
taken on the confi~uration t+Llt and
hence the factors OXr,i 6Xs,} are taken as
constant during the variation.
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16-8 Elastic Constitutive Relations in U.L.F.
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We also have

T.L. U.L.
Transformation

formulation formulation

0

JSi} t ts POt 0
1'i} o i} = t t Xi,m 1'mn t Xj,n

P

0

oCijrs tC~rs
C Po 0 Coo

o its = t t Xi,a t Xj,b t abpq t Xr,p t Xs,q
P

(To be derived below)

Consider the tangent constitutive
tensors oC~rs and tCiys :

Recall that

dOSi} = oCijrS doErs

~d'ff '1dtS" = tG· dtE I erentlaIi Irs rs increments
.s--

Now we note that
o

dOSii· = ~ PXi a PXi b dtSabp , "

doErs = JXp,r Jxq,s dtEpq



Hence

(~ PXi,. ?Xj.b d,Sab) =DC". (6xp,r D'xq,S d'E~
... I I • T

doSik doErs

Solving for dtSab gives

d,S.b = (~6x.'i 6xb.j. DCijrs 6xp,r Jx."s) litEpq
\ '

tCabpq

And we therefore observe that the
tangent material relationship to be used
is

t

C _Pt t C t t
t abpq - 0-=- OXa,i OXb.J- o· iJ"s oXp,r oXq,s

P
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16-10 Elastic Constitutive Relations in D.L.F.
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Now compare each of the integrals appearing in
the T.L. and U.L. equations of motion:

1) fav dSij.8oeij. °dV =ftvtTij.8tet tdV ?
, ,

True, as we verify by substituting the
established transformations:

Lv (~ PXi,m ~mn PX~n ) (dXr,i dxs.;. 8ters) °dV

. IS . 30eiL

o t •
=r tTmn 8ters (~Xi,m dXr,i) (~Xj.,n dxs,j.) ~p °dV
~v p

3m• 3ns -1-dV-

=r tTmn 8temn tdVJtv

2) fov dSt8011t °dV =JvtTt8tl1t tdV ?
I I

True, as we verify by substituting the
established transformations:

fav (:PPXi,m tTmn PX~n) (dXr,i dxs,j. 8tl1rs) °dV
. P " ,. .

riSt 30TJij-

=r tTmn 8tl1rs (PXi,m dXr,i)(?X~,n dxs,~) ~P °dVJov P
----=---~~

3m• 3ns IdV

= r tTmn 8tl1mn tdVJtv



3) fov oCijrs oers 80eij °dV = t tC~rs ters &e~ tdV ?
I I

True, as we verify by substituting the
established transformations:

fa (0 )Po 0 0 0
0v tp t Xi,a t Xj,b tCabpq t xr,p t Xs,q X

\ I I

OCijrs

(dXk,r dxe.s tekf) (dXm,i dxn.j- 8temn) °dV
\ T I \ J

Provided the established
transformations are used, the three
integrals are identical. Therefore the
resulting finite element discretizations
will also be identical.

(JKL + JKNd dU = t+~tR - JF

(~KL + ~KNd dU = t+~tR - ~F

Topic Sixteen 16-11
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dKL = asL

dKNL = asNL

dE = tE

The same holds for
each equilibrium iteration.



16-12 Elastic Constitutive Relations in u'L.F.
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Hence, to summarize once more,
program 2 gives the same results as
program 1, provided

CD ~ The Cauchy stresses are
calculated from

t
t _Pt ts tTiJ- - 0:::- OXi,m 0 mn oXj,n

P
® ~ The tangent stress-strain law is

calculated from
t

C _Pt t C t t
t ifs - up OXi,a OXj,b 0 abpq oXr,p oXs,q

Conversely, assume that the material
relationships for program 2 are given,
hence, from laboratory experimental
information, tTij- and tCijrs for the U.L.
formulation are given.
Then we can show that, provided the
appropriate transformations

o
ts - POt 0
o it - -t tXi,m Tmn tXj,n

P
o

C - Po 0 Coo
o ijrs - -t tXi,a tXj,b t abpq tXr,p tXs,q

P
are used in program 1 with the T.L.
formulation, again the same numerical
results are generated.



Hence the choice of formulation (T.L.
vs. U.L.) is based solely on the
numerical effectiveness of the methods:

• The ~BL matrix (U.L. formulation)
contains less entries than the tiBL
matrix (T.L. formulation).

• The matrix product BT C B is less
expensive using the U.L. formulation.

• If the stress-strain law is available in
terms of tis, then the T.L. formulation
will be in general most effective.

- Mooney-Rivlin material law
-Inelastic analysis allowing for large

displacements / large rotations, but
small strains
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16-14 Elastic Constitutive Relations in U.L.F.
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THE SPECIAL CASE
OF ELASTICITY

Consider that the components JCi1S are
given:

ts tc ta i} = a ijrs aE rs
From the above discussion, to obtain
the same numerical results with the
U.L. formulation, we would employ

t
t _ P t (tc t) tTi} - op aXi,m a mnrs aE rs aXj.n

t

C Pt t C t t
t ilS = 0 aXi,a aXj,b a abpq aXr,p aXs,q

P

We see that in the above equation, the
Cauchy stresses are related to the
Green-Lagrange strains by a
transformation acting only on the m
and n components of JCmnrs .

However, we can write the total stress
strain law using a tensor, ~C~rs, by
introducing another strain measure,
namely the Almansi strain tensor,

tTi} = ~C~s !E~~/AlmanSi strain tensor

t
tca _ P t t tc . t t
tits - ~ aXi,a aXj.b a abpq aXr,p aXs,q

P



Definitions of the Almansi strain tensor:

~Ea = ! (I - ~XT ~X) / a:uk- 2 - - - aXJ-

ta 1(t t t t)
tE·· = - tU" + tU' . - tUk' tUk .I'" 2 I.... ~.I .I.~

• A symmetric strain tensor, ~E~ = ~E;

• The components of ~E a are not
invariant under a rigid body rotation
of the material.

• Hence, ~Ea is not a very useful strain
measure, but we wanted to introduce
it here briefly.
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16-16 Elastic Constitutive Relations in u'L.F.
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Example: Uniaxial strain

t t~ 1 (t~)2
of 11 = 0L +"2 0L

strain

1.0

-1.0=--_~~

Green-Lagrange

Engineering

~:.--_- Almansi
ta

1.0 °L
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It turns out that the use of ~Clrs with
the Almansi strain tensor is effective
when the U.L. formulation is used with
a linear isotropic material law for large
displacement / large rotation but
small strain analysis.
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• In this case, ~C~s may be taken as

t . a
tCijrS = A8ij- 8rs + f.L(8ir 8js + 8is 8jr)

• j

= tCiys constants

Practically the same response is
calculated using the T.L. formulation
with

JCijrS = A 8it 8rs + f.L(8ir 8js + 8is 8jr)
\
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= oC iys constants

MALLET ET AL
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TWELVE &-NODE ELEMENTS
FOR HALF OF ARCH

Slide
16·1

E =10 X 108 Ib./in.2

v= 0.2

04030.201

20

30

40

LOAD P [Ib]

VERTICAL DISPLACEMENT AT APEX Wo [in]

Load-deflection curve for a shallow
arch under concentrated load
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The reason that practically the same
response is calculated is that the
required transformations to obtain
exactly the same response reduce to
mere rotations:

Namely, in the transformations from
~C~s to JCabPq, and in the relation
between oCijrs and tCiys ,

o
-.e ..!- 1 [JXi.~ = JX = JR Jutp -, r

..!- tR-0_

Transparency
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However, when using constant material
moduli (E, v) for large strain analysis,
with

totally different results are obtained.
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E= -:-:--_E--'-:-(1---,---:-.--:v)__=__:_
(1 + v) (1 - 2v)
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A

°L
t - tBefore, we used 0811 = E oE11.

. t - t aNow, we consider 'T11 = E tE 11 •

Consider the 1-D problem already
solved earlier:

Material constants E, v

Here, we have
Transparency

16-33

t tp
1'11 = ~

A

U · tL 0L tAt E- t asing = + '-1, 'T11 = tE11,

obtain the force-displacement
relationship.

we
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~tp = E2A (1 - C~r)
-t-----jL-----+-- t~
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Example: Corner under tip load

L

h A

L = 10.0 m}!! = _1
h = 0.2 m L 50
b = 1.0 m
E = 207000 MPa
v = 0.3



Finite element mesh: 51 two-dimensional
a-node elements

25 elements
-I

Topic Sixteen 16-21
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JR
f'+t""-----"""1JI-'""'1J

not drawn
to scale

25
elements

:~
I I I I I

All elements are
plane strain
elements.
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Consider a nonlinear elastic analysis.
For what loads will the T.L. and U.L.
formulations give similar results?
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Transparency
16-38 For large displacement/large

rotation, but small strain condi
tions, the T.L. and U.L. formula
tions will give similar results.

- For large displacement/large
rotation and large strain condi
tions, the T.L. and U.L. formula
tions will give different results,
because different constitutive
relations are assumed.

Beam elements,
.-:T.L. formulation

ol&-===----+-----+---_+_-
o 5 10 15
Vertical displacement of tip (m)

Results: Force-deflection curve
• Over the range of loads shown, the T.L.

and U.L. formulations give practically
identical results

• The force-deflection curve obtained with
two 4-node isoparametric beam
elements is also shown.

6
2-D elements,
T.L. and U.L.
formulations~4

Force
(MN)2
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Deformed configuration for a load of 5 MN
(2-D elements are used):

Undeformed 1Rr--------
I
I
I
I
I
I Deformed, load = 1 MN

Deformed, load=5 MN

Numerically, for a load of 5 MN, we have,
using the 2-D elements,

T.L. formulation U.L. formulation
vertical tip

15.289 m 15.282 m
displacement

The displacements and rotations are large.
However, the strains are small - they can
be estimated using strength of materials
formulas:

Cbase = M~~2) where M • (5 MN)(7.5 m)

• 3%

Topic Sixteen 16-23
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Modeling of
Elasta-Plastic and
Creep
Response Part I

• Basic considerations in modeling inelastic response

• A schematic review of laboratory test results, effects of
stress level, temperature, strain rate

• One-dimensional stress-strain laws for elasto-plasticity,
creep, and viscoplasticity

• Isotropic and kinematic hardening in plasticity

• General equations of multiaxial plasticity based on a
yield condition, flow rule, and hardening rule

• Example of von Mises yield condition and isotropic
hardening, evaluation of stress-strain law for general
analysis

• Use of plastic work, effective stress, effective plastic
strain

• Integration of stresses with subincrementation

• Example analysis: Plane strain punch problem

• Example analysis: Elasto-plastic response up to ultimate
load of a plate with a hole

• Computer-plotted animation: Plate with a hole

Section 6.4.2

6.20

The plasticity computations are discussed in

Bathe, K. J., M. D. Snyder, A. P. Cimento, and W. D. Rolph III, "On Some
Current Procedures and Difficulties in Finite Element Analysis of Elas
tic-Plastic Response," Computers & Structures, 12, 607-624, 1980.
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Snyder, M. D., and K. J. Bathe, "A Solution Procedure for Thermo-Elas
tic-Plastic and Creep Problems," Nuclear Engineering and Design, 64,
49-80, 1981.

The plane strain punch problem is also considered in

Sussman, T., and K. J. Bathe, "Finite Elements Based on Mixed Inter
polation for Incompressible Elastic and Inelastic Analysis," Computers
& Structures, to appear.
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MODELING OF INELASTIC
RESPONSE:

ELASTO-PLASTICITY, CREEP
AND VISCOPLASTICITY

• The total stress is not uniquely
related to the current total strain.
Hence, to calculate the response
history, stress increments must be
evaluated for each time (load) step
and added to the previous total
stress.

• The differential stress increment is
obtained as - assuming infinitesimally
small displacement conditions-

dO'ij- = C~s (ders - de~~)

where

C~s = components of the elasticity
tensor

ders = total differential strain increment

de~~ = inelastic differential strain
increment



The inelastic response may occur
rapidly or slowly in time, depending on
the problem of nature considered.
Modeling:
• In ~Iasticity, the model assumes that

de~s occurs instantaneously with the
load application.

• In creep, the model assumes that
de~~ occurs as a function of time.

• The actual response in nature can be
modeled using plasticity and creep
together, or alternatively using a
viscoplastic material model.

- In the following discussion we
assume small strain conditions,
hence

• we have either a materially
nonlinear-only analysis

• or a large displacement/large
rotation but small strain
analysis

Topic Seventeen 17-5
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• As pointed out earlier, for the large
displacement solution we would use
the total Lagrangian formulation and
in the evaluation of the stress-strain
laws simply use

- Green-Lagrange strain component
for the engineering strain compo
nents

and

- 2nd Piola-Kirchhoff stress compo
nents for the engineering stress
components

Consider a brief summary of some
observations regarding material
response measured in the laboratory

• We only consider schematically what
approximate response is observed; no details
are given.

• Note that, regarding the notation, no time, t,
superscript is used on the stress and strain
variables describing the material behavior.



MATERIAL BEHAVIOR,
"INSTANTANEOUS"

RESPONSE

Topic Seventeen 17-7
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Tensile Test:

Cross
sec:tional
area Ao-z...

Assume
• small strain conditions

• behavior in compression
is the same as in tension

Hence

e - eoe = --::---=-eo
p

(J' = -A
o

engineering
stress, (J

assumed

I
I

I
I

I
I

I
I

~ ", ', ,.",;'

......._-----

fracture

x ultimate
strain

5'

ngineering
test strain, e

Constant temperature
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Effect of strain rate:
(J'

de. .
dt Increasing

e

Effect of temperature
(J'

temperature is increasing

e
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MATERIAL BEHAVIOR, TIME
DEPENDENT RESPONSE Transparency

17-11

• Now, at constant stress, inelastic
strains develop.

• Important effect for materials when
temperatures are high

Typical creep curve
Transparency
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Engineering strain, e
fracture

Tertiary
range

Secondary
range

a = constant
temperature = constant

Instantaneous
strain {
(elastic and Primary
elasto-plastic) range

--:..+----=--+------'--~--+------l-

time
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Effect of stress level on creep strain

e
x

temperature = constant

x ---.s---::fracture

I

time

Effect of temperature on creep strain
Transparency
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e
-S" fracture

x ""x

u=constant

time



MODELING OF RESPONSE

Consider a one-dimensional situation:
tp

~tu h= A

~ jt.---tp
'e ~ ~

L L

• We assume that the load is increased
monotonically to its final value, P*.

• We assume that the time is "long" so
that inertia effects are negligible
(static analysis).

Topic Seventeen 17-11
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Load plasticity
effects

P*:..-....r_--,pt-redominate

.creep effects

f
Transparency
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time-dependent inelastic strains
are accumulated - modeled as
creep strains

'-"
time inte~al t* (small)
without time-dependent
inelastic strains

time
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strain

tOe

trr = E teE

telN = teP

·1·

rry- - - - -

Plasticity, uniaxial, bilinear
material model stressTransparency
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Creep, power law material model:
eC = ao <T

a
, ta2

d
trr = E teE

telN = teC + teP

t* t time
(small)

• The elastic strain is the same as in
the plastic analysis (this follows from
equilibrium).

• The inelastic strain is time-dependent
and time is now an actual variable.
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Viscoplasticity:

• Time-dependent response is modeled
using a fluidity parameter 'Y:

e = <1 + 'Y (~ - 1)E cry
. . /

eVP

Transparency
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where

( _ ) _ { 0 I cr -< crycr cry -
cr - cry I cr > cry

Transparency
17·20

elastic
strain

elastic
strain

total
strain. .

Increasing 'Y

Typical solutions (1-0 specimen):

steady~state depends on
solution increase in

total \ .strain fry as function
of eVP

time

non-hardening material

time

hardening material
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• So far we considered only loading
conditions.

• Before we discuss more general
multiaxial plasticity relations, consider
unloading and cyclic loading
assuming uniaxial stress conditions.

• Consider that the load increases in
tension, causes plastic deformation,
reverses elastically, and again causes
plastic deformation in compression.

load

elastic

plastic

time



Bilinear material assumption, isotropic
hardening (T ET

(Ty

e

plastic strain (T~

e~

plastic strain
I---+-l e~

Bilinear material assumption, kinematic
hardening (J ET

(Ty

plastic strain e~

e
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MULTIAXIAL PLASTICITY

To describe the plastic behavior in
multiaxial stress conditions, we use

• A yield condition

• A flow rule

• A hardening rule

In the following, we consider isothermal
(constant temperature) conditions.

These conditions are expressed using a
stress function tF.

Two widely used stress functions are the

von Mises function

Drucker-Prager function
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von Mises

tF =~ ts ts.. _ tK
2 I} II'

Transparency
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Drucker-Prager

t ~a.
_II ; t(j =
3

1 t t- s .. s ..
2 If If

We use both matrix notation and index
notation: Transparency

17-28

dCT11
dCT22
dCT33
dCT12
dCT23
dCT31

dCT =

matrix notation
note that both de~2

and de~1 are added

de~1
de~2

de~3

de~2 + de~1

de~3 + de~2

de~3 + de~1
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Transparency
[ de~, de~2 de~3 ]17-29

d P- de~1 de~2 de~3eij -
de~1 de~2 de~3

index
notation

[ dcrl1 d<J12 dcr'3 ]
d<J~ = d<J21 d<J22 d<J23

d<J31 d<J32 d<J33
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The basic equations are then (von Mises tF):
1) Yield condition

tF C<Jij, tK) = 0

current str~sses~ function of
plastic strains

tF is zero throughout the plastic response

• 1-D equivalent: ~ C<J2 - t<J~) = 0
(uniaxial stress) 7 ~

current stresses function of
plastic strains.



2) Flow rule (associated rule):

P t atF
deii. = X. -at

I ITi}

where tx. is a positive scalar.

• 1-D equivalent:

d P 2 t\ t
e11 = 3 I\. IT

d P 1 t\ t
e22 = - 3 I\. IT

d P 1 t\ t
e33 = - 3 I\. IT

3) Stress-strain relationship:

dIT = CE (d~ - d~P)

• 1-D equivalent:

dIT = E (de11 - de~1)

Thpic Seventeen 17-19
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Our goal is to determine CEP such that

dO" = CEP de- ~-

\
instantaneous elastic-plastic stress-strain matrix

General derivation of CEP
:

Define



Using matrix notation,

Topic Seventeen 17-21
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tgT = [tq11 : tq : tq :
: 22: 33:

't. t I

i P22: P33 i
tIt It]
P12 i P23 i P31

We now determine tx. in terms of de:

Using tF = 0 during plastic deformations,

t atF atF p
d F = -t- d(Jii. + --:::t=Pat deii.a(Ji} I ei} I

= 'gT do- - 'ET~
tx.tg

=0
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Also

tgTdO" = tgT (QE (d~ - d!t))
L . t

The flow rule assumption may be
written as

Hence
tgT dO" = tgT (CE (d~ _ tA tg))= tA tQT tg-

Solving the boxed equation for tA gives

Hence we can determine the plastic
strain increment from the total strain
increment: I ..

tota strain Increment

p tgTCEd~~t
de = ( ) 9~ - tQTtg + tgT CEtg

plastic strain
increment



Example: Von Mises yield condition,
isotropic hardening

Two equivalent equations:

Topic Seventeen 17-23
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t ~
O"Y=T

(trr • t )2 (t t)2 (t t)2

~~\+t-t~/?~
principal stresses

tF _ 1 t t t. t _ 1 t 2- 2: sij.~ K , K - 3 0"Y

~5 t

d · . t " (Tmm ~eVlatonc s resses: Sij- = (Tij- - -3- Uij
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Transparency
17-41 Yield surface

for plane stress
End view of
yield surface
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We now compute the derivatives of the
yield function.

First consider tpy.:

t _ atF _ a (1 t t 1 t 2
py. - - atef! - - atef! 2 sy. SiJ- - 3 O'y)

II' t(J"it fixed II'

(t(J"ij- fixed implies tSij- is fixed)



What is the relationship between tcry
and the plastic strains?

We answer this question using the
concept of "plastic work".

• The plastic work (per unit volume) is
the amount of energy that is
unrecoverable when the material is
unloaded.

• This energy has been used in
creating the plastic deformations
within the material.

• Pictorially: 1·0 example

'Ibpic Seventeen 17-25
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stress

~et

Shaded area equals
plastic work t wp:

'----------strain
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rtePIjo

• In general, 'Wp =Jo Tay.de~
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Consider 1-0 test results: the current
yield stress may be written in terms of
the plastic work.

Shaded area =:

Wp = ~ (~T - i) (t(1~ - (1~)

'---------- strain

We can now evaluate tPij- - which
corresponds to a generalization of the
1-D test results to multiaxial conditions.

t _ 2 t (d\JY a
t
Wp)/at

(1Y
Pij- - 3 (]'Y dtWp ater ate~

\ t /.



(effective stress)

(increment iii
effective

t plastic strain)
result is obtained

Alternatively, we could have used that
dtWp = tcr dtet

where

and then the same
using

t .. _ 2 t (d\ry ate
P

)
Pit - 3 (J'y dteP ate~

Next consider tq~:

'Ibpic Seventeen 17-27
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We can now evaluate gEP:

symmetric

Transparency
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cEP = _E_
- 1+v

de11 de22 2 de12

2
'

I I I
1 - V (') V 'I I I Q. 1 , I-- - ~ 511 I -- - ~ 511 522 •.• - P 511 512 •.•
1-2v 11-2v I I I
- - - - - - - - - - - - - - - - -:2: -1- I" - - - - - - I .......

I 1 - V (') I I Q. ' , I
I 1 _ 2v - ~ 522 I··· I - P 522 512 I···
L 1_ I" - - - - - - I -

I .•• I - ~ '533 1512 I ...
I I I

-'1-----2 '

I - -~('512) I •.•
I 2 I
-------1-

I •••
I
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3 1 ( 1 )where 13 = - f2
2 O"y 1 + g E ET 1 + v

3 E - ET E

Evaluation of the stresses at time t+ ~t:

The stress integration
must be performed at
each Gauss integration
point.



We can approximate the evaluation of
this integral using the Euler forward
method.

• Without subincrementation:

J:
t+~le I+~I I- e e

Ie CEP
d~ . CEP

,d~"/ - - -
- t

• With n subincrements:

de
n ~t

t+~--s-
n

+ ...

Topic Seventeen 17-29
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de
n

t+(n-1)Lh
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Pictorially:

t
subincrements

t+8t
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Summary of the procedure used to
calculate the total stresses at time
t+dt.
Given:

STRAIN = Total strains at time t+dt
SIG = Total stresses at time t
EPS = Total strains at time t

(a) Calculate the strain increment
DELEPS:

DELEPS = STRAIN - EPS



(b) Calculate the stress increment
DELSIG, assuming elastic behavior:

DELSIG = CE * DELEPS

(c) Calculate TAU, assuming elastic
behavior:

TAU = SIG + DELSIG

(d) With TAU as the state of stress,
calculate the value of the yield
function F.

(e) If F(TAU) < 0, the strain increment
is elastic. In this case, TAU is
correct; we return.

(f) If the previous state of stress was
plastic, set RATIO to zero and go
to (g). Otherwise, there is a
transition from elastic to plastic and
RATIO (the portion of incremental
strain taken elastically) has to be
determined. RATIO is determined
from

F (SIG + RATIO * DELSIG) = 0

since F = 0 signals the initiation of
yielding.

Topic Seventeen 17-31
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Transparency
17-57 (9) Redefine TAU as the stress at start

of yield
TAU = SIG + RATIO * DELSIG

and calculate the elastic-plastic
strain increment

DEPS = (1 - RATIO) * DELEPS

(h) Divide DEPS into subincrements
DDEPS and calculate

TAU ~ TAU + CEP * DDEPS
for all elastic-plastic strain
subincrements.
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PLASTIC ZONE

Plane strain punch problem

Slide
17-2

P/l Ii.
I

z 10- .....I

lOl- A ,,"~.

Finite element model of punch problem
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STRESS, 0' lplll

'00

"200 Ib.'CW.. h
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Solution of Boussinesq problem-2 pt. integration
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STRESS, 0' lpoi)

200

'00
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.. T,Z
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10 2.0 30
DISTANCE FROM CENTERLINE, b (in)

Solution of Boussinesq, problem-3 pt. Integration



APPLIED
LOAD,
P/2kb
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~
• 2 pi In,
a S"pI inl
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0.05 QIQ 0.'5
DISPLACEMENT, ,,/b

0.20

Load-displacement curves for punch problem
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Limit load calculations:

p

rTTTTl

o

• Plate is elasto-plastic.

Elasto-plastic analysis:

Material properties (steel)
a

740 -I--

a
(MPa)

~
Er = 2070 MPa, isotropic hardening

'-E=207000 MPa, v=0.3

e
• This is an idealization, probably

inaccurate for large strain conditions
(e > 2%).



TIME = 0
LOAD = 0.0 MPA

TIME - 41
LOAD - 512.5 MPA

TIME - 62
LOAD - 660.0 MPA

=====..:=r~--.,.,......~"-----....----....~-----,.._-...-.~....,....,
••••1
••••1...,
!!!!....
~....

\
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Computer
Animation
Plate with hole
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Modeling of
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Creep
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• Strain formulas to model creep strains

• Assumption of creep strain hardening for varying stress
situations

• Creep in multiaxial stress conditions, use of effective
stress and effective creep strain

• Explicit and implicit integration of stress

• Selection of size of time step in stress integration

• Thermo-plasticity and creep, temperature-dependency of
material constants

• Example analysis: Numerical uniaxial creep results

• Example analysis: Collapse analysis of a column with
offset load

• Example analysis: Analysis of cylinder subjected to heat
treatment
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The computations in thermo-elasto-plastic-creep analysis are described
in

Snyder, M. D., and K. J. Bathe, "A Solution Procedure for Thermo-Elas
tic-Plastic and Creep Problems," Nuclear Engineering and Design, 64,
49-80, 1981.

Cesar, F., and K. J. Bathe, "A Finite Element Analysis of Quenching
Processes," in Numerical Methods jor Non-Linear Problems, (Taylor,
C., et al. eds.), Pineridge Press, 1984.
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The effective-stress-function algorithm is presented in

Bathe, K. J., M. Kojic, and R. Slavkovic, "On Large Strain Elasto-Plastic
and Creep Analysis," in Finite Element Methods for Nonlinear Prob
lems (Bergan, P. G., K. J. Bathe, and W. Wunderlich, eds.), Springer
Verlag, 1986.

The cylinder subjected to heat treatment is considered in

Rammerstorfer, F. G., D. F. Fischer, W. Mitter, K. J. Bathe, and M. D.
Snyder, "On Thermo-Elastic-Plastic Analysis of Heat-Treatment Pro
cesses Including Creep and Phase Changes," Computers & Structures,
13, 771-779, 1981.



CREEP
We considered already uniaxial
constant stress conditions. A typical
creep law used is the power creep law
eO = ao (181 t~.

time

Aside: other possible choices for the creep
law are

• eC
= ao exp(a1 cr) [1 - exp(-a2 c~:r4 t)]

+ as t exp(ae cr)

• e
C

= (ao (cr)a1) (ta2 + a3 t84 + as t
a6) exp (te +-2~3.16)
~'-'

temperature. in degrees C

We will not discuss these choices further.
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The creep strain formula eC = aO (Tal ta2

cannot be directly applied to varying stress
situations because the stress history does
not enter directly into the formula.

-----(12
Ccreep strain not affected

_-.J~---(11 by stress
history prior
to t1

time

"time

decrease in the creep
strain is unrealistic

f----.......-------(11

~---,...--------(12

Example:

J I:
eC
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The assumption of strain hardening:

• The material creep behavior depends
only on the current stress level and
the accumulated total creep strain.

• To establish the ensuing creep strain,
we solve for the "effective time" using
the creep law:

_ totally unrelated
teC = aQ \:ra1~~ to the physical

time

(solve for t)

The effective time is now used in the
creep strain rate formula:

Now the creep strain rate depends
on the current stress level and on
the accumulated total creep strain.
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Pictorially:
• Decrease in stress

to'
-1-__------------

4---1------------- a'

+-------------- time
0'2

material
/response

~__~;::::::::.. a'

~~------------time

• Increase in stress

to'-+--------------
~------........'-------- a'

+---------------- time
0'2

material
--.-:::::::.~---=--..:::>

response

-4£:..-------------- time



• Reverse in stress (cyclic conditions)

-+----+--------time

<12L-- _

_ _ ~<12 curve
- - _ - - --s-- <11 curve

/ --
,/ -/ "",/

-fI""--------"-.:-------- time

MULTIAXIAL CREEP

The response is now obtained using
(t+tl.te

t+dt(T = t(T +A~ - CE d (~ - ~c)

As in plasticity, the creep strains in
multiaxial conditions are obtained by a
generalization of the 1-0 test results.
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18-11 We define

,....---.....
t- 3 t t
(J = 2 Si~ sy. (effective stress)

t-Ce = (effective strain)

Transparency
18-12

and use these in the uniaxial creep
law:

eC = ao cr81
{82

The assumption that the creep strain
rates are proportional to the current
deviatoric stresses gives

te' C t ts (' M' I t" 'ty)i~ = ry i~ as In von Ises p as ICI

try is evaluated in terms of the effective
stress and effective creep strain rate:

3 t.:.C
t e
ry = 2 tcr



Using matrix notation,

d~c = Coy) (D to") dt
" ;/

deviatoric
stresses

For 3-D analysis,

Topic Eighteen 18-9
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D=

! -~ -~

! -~

!

symmetric
1

1
1

• In creep problems, the time
integration is difficult due to the high
exponent on the stress.

• Solution instability arises if the Euler
forward integration is used and the
time step ~t is too large.
- Rule of thumb:

A -c -< _1 (t-E)
L.l~ - 10 ~

• Alternatively, we can use implicit
integration, using the a-method:

HaatO" = (1 - a) to" + a HatO"

Transparency
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Iteration algorithm:
t+~ta(l-1) = ta +_(k) _

cE [~(1-1 L ~t t+a~t'Y~k-=-1{) (0 t+a~t!!~k-=-1{»)]

we iterate at
each integration
point

r

xx
x

x

x

k = iteration counter at each integration point

s

Transparency
18-16 • a>V2 gives a stable integration

algorithm. We use largely a = 1.0.

• In practice, a form of Newton
Raphson iteration to accelerate
convergence of the iteration can
be used.



• Choice of time step dt is now
governed by need to converge
in the iteration and accuracy
considerations.

• Subincrementation can be employed.

• Relatively large time steps can be
used with the effective-stress
function algorithm.

THERMO-PLASTICITY-CREEP
stress

O'y3-+-__
Plasticity: O'y2-+-_-+-

0'y 1---l---74L...-----r--
Increasing
temperature

strain
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Creep:

creep
strain

Increasing
tern erature

time
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Now we evaluate the stresses using
t+~te

I+AIQ: = IQ: + r, -TCEd(~ _ ~p _ ~c _ ~TH)
J,~ .-5~

thermal
strains

Using the ex-method,

I+AIQ: = t+AICE{ [~ _ ~p _ ~c _ ~TH]

+[I~ _ I~P _ t~C _ I~TH]}

where

e = I+Ale - Ie
- --

and
~p = Llt (t+a~t~) (D t+a~ta)

~c = Llt (t+a~t'Y) (D t+a~ta)

e;H = (t+~ta t+~t8 - ta t8) Oi.j-

where

ta = coefficient of thermal expansion at
time t

t8 = temperature at time t



The final iterative equation is

- Lit C+Cldt~~k~1{») (0 t+Cldt(J~k~1{»)

- Lit (t+Cldt)'~k~1{») (0 t+Cldt(J~k~1{»)

_~TH]

and subincrementation may also be
used.

Numerical uniaxial creep results:

Topic Eighteen 18-13
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5m

Area =1.0 m2

Uniaxial stress 0"

Creep law:
eC = ao (0")a1 ta2

stress in MPa
t in hr
E = 207000 MPa
v = 0.3
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The results are obtained using two
solution algorithms:

• ex = 0, (no subincrementation)
• ex = 1, effective-stress-function

procedure

In all cases, the MNO formulation is
employed. Full Newton iterations
without line searches are used with

ETOL=0.001
RTOL=0.01
RNORM = 1.0 MN

Transparency
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1) Constant load of 100 MPa
eC = 4.1 x 10~11 (a)3.15 to.8

0.1 ~t = 10 hr
a=1

(J' = 100 MPa

displacement
(m) 0.05

1000500

time (hr)

0+-------+------+----
o
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at = 10 hr
<x=1

2) Stress increase from 100 MPa to
200 MPa

eC = 4.1 x 10-11 (cr)3.15 to.8

(J = 200 MPa.6
disp.
(m)

.4

.2

1000 time (hr)500
0-+-==---- ----+ -+-__

o

(J = 100 MPa
L---~

Load function employed:
Transparency

18-26

200
Applied
stress
(MPa)

100+-------i1

1000
O-+---------,H:-II -----+---

o (\
500 510

time (hr)
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~t = 10 hr
(1=1

0.1
disp.
(m)
0.0

3) Stress reversal from 100 MPa to
-100 MPa

eC = 4.1 x 10-11 (cr)3.15 to.8

(J' = 100 MPa

Transparency
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500 1000 time (hr)

-0.05

Transparency
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4) Constant load of 100 MPa
eC = 4.1 x 10-11 (cr)3.15 t°.4

.01

disp.
(m)

.005

~t = 10 hr
(1=1 (J' = 100 MPa

1000 time (hr)500

0+- --+ -+-__

a
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(T = 100 MPa

5) Stress increase from 100 MPa to
200 MPa
.06 eC = 4.1 x 10-11 (cr)3.15 t°.4

8t=10hr
ex = 1

.04
disp.
(m)

.02

1000 time (hr)500

0,+-- --+ +- __

o

(T = 100 MPa

6) Stress reversal from 100 MPa to
-100 MPa

eC = 4.1 x 10-11 (cr)3.15 t°.4
.01 8t = 10 hr

disp. ex = 1
(m)

.005

Transparency
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O'+- -+~;;;:::__----+-------

1000 time (hr)

(T = -100 MPa
-.005
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Consider the use of a = 0 for the
"stress increase from 100 MPa to 200
MPa" problem solved earlier (case #5):

.06

.04
disp.
(m)

.02

~t = 10 hr

1000 time (hr)500

0,+- -+ +-__
o

Transparency
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Using dt = 50 hr, both algorithms
converge, although the solution becomes
less accurate for a - O.

.06

.04
disp.
(m)

.02

~t = 50 hr

(!)(!)

(!)

<X = 1 ~t = 10 (!), (!)

~ (!)

1000 time (hr)500
0,_------+------4----
o



Topic Eighteen 18-19

Using dt = 100 hr, (X = a does not
converge at t = 600 hr. (X = 1 still gives
good results.

.06

Transparency
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~t=100hr
.04

disp.

(m) a = 1, ~t = 10 hr
.02 ~

a=1--
1000 time (hr)500

Oe--------t-~---__+_-
o

E=2x106 KPa
v=O.O
plane stress
thickness = 1.0 m

Example: Column with offset load

R

-11-0.75
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10 m

Euler buckling load = 41 00 KN
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Goal: Determine the collapse response
for different material assumptions:

Elastic

Elasto-plastic

Creep

The total Lagrangian formulation is
employed for all analyses.

Solution procedure:

• The full Newton method without
line searches is employed with

ETOL=0.001

RTOL=0.01

RNORM = 1000 KN



Mesh used: Ten 8-node quadrilateral
elements

~ 3 x 3 Gauss integration
~ used for all elements

Elastic response: We assume that the
material law is approximated by

ts tc to ij = 0 ijrs OCrs

where the components JCijrS are
constants determined by E and v (as
previously described).

Topic Eighteen 18·21
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5000

Applied
force
(KN) 2500

Euler
buckling ioad

tPPlied forcenLateraljJr displacement

O+-----t----+----+---
a 2 4 6

Lateral displacement of top (m)
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Elasto-plastic response: Here we use

ET = 0
cry = 3000 K Pa (von Mises yield
criterion)

and

J
I+At E

t+LltS = cis + o-CEP doE
0_ - tE 0- -

0-

whereoCEP is the incremental elasto
plastic constitutive matrix.

Plastic buckling is observed.

Elastic
2000

Applied
force
(KN)

1000
Elasto-plastic

O+---t-----t---+---+---+---
o .1 .2 .3 .4 .5

Lateral displacement of top (m)



Creep response:

• Creep law: eC = 10-16(cr)3 t (t in
hours)
No plasticity effects are included.

• We apply a constant load of 2000
K N and determine the time history of
the column.

• For the purposes of this problem, the
column is considered to have
collapsed when a lateral displacement
of 2 meters is reached. This
corresponds to a total strain of about
2 percent at the base of the column.

We investigate the effect of different
time integration procedures on the
obtained solution:

• Vary At (At = .5, 1, 2, 5 hr.)

• Vary ex (ex=O, 0.5, 1)

'Ibpic Eighteen 18-23
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Collapse times: The table below lists
the first time (in hours) for which the
lateral displacement of the column
exceeds 2 meters.

a=O a=.5 a=1
dt=.5 100.0 100.0 98.5
dt= 1 101 101 98
dt=2 102 102 96
dt=5 105 105 90

Pictorially, using dt =0.5 hr., ex =0.5,
we haveTransparency

18-44
Time= 1 hr

(negligible creep
effects)

Time=50 hr
(some creep

effects)

I
f
III
f
III

Time= 100 hr
(collapse)



Topic Eighteen 18-25

1.0

0.5

Transparency
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Choose at = 0.5 hr.
- AI1 solution points are connected

with straight lines.
2.5

a=1 a=O
collapse '- ~ a = .5

2.0+----~--------IJ~--

Lateral
disp. 1.5
(m)

20 40 60 80 100' 120
time (hr)

Effect of a: Choose at=5 hr.
- All solution points are connected

with straight lines.
2.5

collapse2.0,-+--__----:. ---->~-~

Lateral 1.5
disp.
(m) 1.0

0.5

Transparency
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O+---+---+---+----f--t---......
o 20 40 60 80 100 120

time (hr)
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We conclude for this problem:

• As the time step is reduced, the
collapse times given by ex = 0,
ex = .5, ex = 1 become closer. For
at = .5, the difference in collapse
times is less than 2 hours.

• For a reasonable choice of time
step, solution instability is not a
problem.



r

I
=-"T

I
I

zf-r
l~
2Ra

I I IS: : S!IL..............--JIL-IL.....L..I..L.IL..&II~I..LIu..111'"'r',~

Ra = 25 mm ~

Analysis of a cylinder subjected to heat treatment
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800

400 20

o 200 400 600 ODC 900

Temperature-dependence of the specific heat,
~, and the heat conduction coefficient, k.
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1.2

0.4

----------------, .40

v

.32

Temperature-dependence of the Young's modulus, E,
Poisson's ratio, II, and hardening modulus, ET

600 ,..-----------------..
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200

o

Temperature-dependence of the material yield stress
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600 0 °c 900
o

-2

-6

-4

a 1O-5oc-/r------- --.

2

Temperature-dependence of the instantaneous coeffiCient
of thermal expansion (including volume change due to

phase transformation), a

,.,..-------------------,

1SII+---+------t---+---"~_+---\--I

_+---+------t---""''''<:::'""""-+--_+*-----'I

t·
IU'5_

D.5

J.j
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The calculated transient temperature field
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600

10 3D to 60 txI 100 t.oc JOt)

temperature
In element "

2 J. 6810

surface
t~mperaturl

1 J. 6 8 1

I§ranSformar-;;;: --------
mr~rval
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600

100

Surface and core temperature; comparison between
measured and calculated results
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-500
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Measured residual stress field
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Calculated residual stress field
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Topic 19

Beam, Plate, and
Shell Elements
Part I

• Brief review of major formulation approaches

• The degeneration of a three-dimensional continuum to
beam and shell behavior

• Basic kinematic and static assumptions used

• Formulation of isoparametric (degenerate) general shell
elements of variable thickness for large displacements
and rotations

• Geometry and displacement interpolations

• The nodal director vectors

• Use of five or six nodal point degrees of freedom,
theoretical considerations and practical use

• The stress-strain law in shell analysis, transformations
used at shell element integration points

• Shell transition elements, modeling of transition zones
between solids and shells, shell intersections

Sections 6.3.4, 6.3.5

The (degenerate) isoparametric shell and beam elements, including the
transition elements, are presented and evaluated in

Bathe, K. J., and S. Bolourchi, "A Geometric and Material Nonlinear
Plate and Shell Element," Computers & Structures, 11, 23-48, 1980.

Bathe, K. J., and L. W. Ho, "Some Results in the Analysis of Thin Shell
Structures," in Nonlinear Finite Element Analysis in Structural
Mechanics, (Wunderlich, W., et al., eds.), Springer-Verlag, 1981.

Bathe, K. J., E. Dvorkin, and L. W. Ho, "Our Discrete Kirchhoff and Iso
parametric Shell Elements for Nonlinear Analysis-An Assessment,"
Computers & Structures, 16, 89-98, 1983.

•
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References:
(continued)

The triangular flat plate/shell element is presented and also studied in

Bathe, K. J., and L. W. Ho, "A Simple and Effective Element for Anal
ysis of General Shell Structures," Computers & Structures, 13, 673
681, 1981.



STRUCTURAL ELEMENTS

• Beams

• Plates

• Shells

We note that in geometrically nonlinear
analysis, a plate (initially "flat shell")
develops shell action, and is analyzed
as a shell.

Various solution approaches have been proposed:

• Use of general beam and shell
theories that include the desired
nonlinearities.

- With the governing differential
equations known, variational
formulations can be derived and
discretized using finite element
procedures.

- Elegant approach, but difficulties
arise in finite element formulations:
• Lack of generality
• Large number of nodal degrees

of freedom
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• Use of simple elements, but a large
number of elements can model
complex beam and shell structures.

- An example is the use of 3-node
triangular flat plate/membrane
elements to model complex shells.

- Coupling between membrane and
bending action is only introduced
at the element nodes.

- Membrane action is not very well
modeled.

bendingf membrane
artificial

.ISs stiffness

I

\
~3 / degree of freedom with
\/_~ artificial stiffness
~'/..z

L5}~--
xl

X1

Stiffness matrix in
local coordinate
system (Xi).

Example:
Transparency
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• Isoparametric (degenerate) beam and
shell elements.

- These are derived from the 3-D
continuum mechanics equations
that we discussed earlier, but the
basic assumptions of beam and
shell behavior are imposed.

- The resulting elements can be
used to model quite general beam
and shell structures.

We will discuss this approach in some
detail.

Basic approach:

• Use the total and updated Lagrangian
formulations developed earlier.
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We recall, for the T.L. formulation,

f HAtS.. ~HAtE .. 0dV _ HAt(jJ}Jov 0 II'U 0 II' - ;:IL

Linearization ~

£'v OCiirs oers 80ei~ °dV +f,v JSi~8o"ly. °dV

= HAtm - f,v JSi~8oey.°dV

Also, for the U.L. formulation,

JVHA~Sij.8HA~Eij. tdV = HAtm

Linearization ~

Jv tCifs ters 8tei} tdV +Jv~i~8t'T\ij. tdV

= H At9R - f",t'Tij. 8tei}tdV



• Impose on these equations the basic
assumptions of beam and shell -
action:

1) Material particles originally on a
straight line normal to the mid
surface of the beam (or shell)
remain on that straight line
throughout the response history.

For beams, "plane sections initially
normal to the mid-surface remain
plane sections during the response
history".

The effect of transverse shear
deformations is included, and
hence the lines initially normal to
the mid-surface do not remain
normal to the mid-surface during
the deformations.
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Transparency
19-11 time 0

not 90° in general

time t

Transparency
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2) The stress in the direction "normal"
to the beam (or shell) mid-surface is
zero throughout the response history.

Note that here the stress along the
material fiber that is initially normal
to the mid-surface is considered;
because of shear deformations, this
material fiber does not remain
exactly normal to the mid-surface.

3) The thickness of the beam (or shell)
remains constant (we assume small
strain conditions but allow for large
displacements and rotations).
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FORMULATION OF
ISOPARAMETRIC

(DEGENERATE) SHELL
ELEMENTS

• To incorporate the geometric
assumptions of "straight lines normal to
the mid-surface remain straight", and of
"the shell thickness remains constant"
we use the appropriate geometric and
displacement interpolations.

• To incorporate the condition of "zero
stress normal to the mid-surface" we
use the appropriate stress-strain law.

Transparency
19-13

Transparency
19-14

r
X2

tv~ = director vector at node k

ak = shell thickness at node k
(measured into direction of tv~)

Shell element geometry
Exam~: 9-node element
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Element geometry definition:

• Input mid-surface nodal point
coordinates.

• Input all nodal director vectors at time O.
• Input thicknesses at nodes.

Transparency
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r---
X2

- material particle
(OXi)

• Isoparametric coordinate system
(r, s, t):

- The coordinates rand s are
measured in the mid-surface
defined by the nodal point
coordinates (as for a curved
membrane element).

- The coordinate t is measured in
the direction of the director vector
at every point in the shell.

s
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Interpolation of geometry at time 0:
Transparency

19-17N N

k~' hk °Xr ,+ ~ k~' a~ hk °V~i
mid-surface effect of shell

only thickness
material
particle
with isoparametric
coordinates (r, s, t)

hk = 2-D interpolation functions (as
for 2-D plane stress, plane
strain and axisymmetric elements)

°X~ = nodal point coordinates
°V~i = components of °V~

Similarly, at time t, 0t-coordinate

t ~ h t k <D ~ h tvk
Xi = L.J k Xi + 2 L.J ak k ni
~ k=1 vvv k=1 \N\IV

~ I I

Transparency
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The nodal point coordinates and director
vectors have changed.

X3 0vk
_n

}-----+-------/-'--- X2
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To obtain the displacements of any
material particle,

t t 0Ui = Xi - Xi

Hence
N N

tUi = k~1 hk tu~ + ~ k~1 ak hk CV~i - °V~i)

where
tu~ - tx~ - °x~

I - I I (disp. of nodal point k)

Transparency
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tV~i - °V~i = change in direction cosines
of director vector at node k

The incremental displacements from
time t to time t+at are, similarly, for
any material particle in the shell
element,

U. - t+LltX· - tx·
1- 1 I

where
u~ = incremental nodal point displacements

V~i = t+LltV~i - tV~i = incremental change
in direction cosines
of director vector
from time t to time
t +Llt



e3
J---X2

To develop the strain-displacement
transformation matrices for the T.L. and
U.L. formulations, we need

- the coordinate interpolations for the
material particles (OXil tXj).

- the interpolation of incremental
displacements from the incremental
nodal point displacements and
rotations.

Hence, express the V~i in terms of
nodal point rotations.

We define at each nodal point k the
vectors OV~ and °v~:- - °v~

r~~
°v~

°vk
0\ Ik e2 x n 0Vk2 = 0Vk

n
X 0Vk1

y 1= IIe2 x °V~1I2 ,- - -

The vectors °v~, °V~ and °V~ are
therefore mutually perpendicular.
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Then let <Xk and ~k be the rotations
about tv~ and tv~. We have, for small
<Xk, ~k,

v~ = - tv~ <Xk + tv~ ~k

>---+--__ t~

t+dtVk
_n with elk =0

Hence, the incremental displacements
of any material point in the shell
element are given in terms of
incremental nodal point displacements
and rotations

N N

Ui = L hk u~ + 2
t L ak hk [-tV~i <Xk + tV~i ~k]

k=1 k=1



Once the incremental nodal point
displacements and rotations have been
calculated from the solution of the finite
element system equilibrium equations,
we calculate the new director vectors
using

t+.:ltv~ = tv~ +1 (_TV~ dak +TV~ d~k)

L
ak,~k

and normalize length

Nodal point degrees of freedom:

• We have only five degrees of
freedom per node:
- three translations in the Cartesian

coordinate directions
- two rotations referred to the local

nodal point vectors tv~, tv~

• The nodal point vectors tv~, tv~

change directions in a geometrically
nonlinear solution.
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~3

- Node k is shared
by four shell elements
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no physical
stiffness

- Node k is shared
by four shell elements

- One director vector
l~~ at node k

- No physical stiffness
corresponding to
rotation about l~~.



~1

~3

- Node k is shared
by four shell elements

- One director vector
t~~ at node k

- No physical stiffness
corresponding to
rotation about t~~.
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• If only shell elements connect to
node k, and the node is not
subjected to boundary prescribed
rotations, we only assign five
local degrees of freedom to that
node.

• We transform the two nodal rotations
to the three Cartesian axes in order
to
- connect a beam element (three

rotational degrees of freedom) or
- impose a boundary rotation (other

than ak or r3k) at that node.
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• The above interpolations of °Xi, tXi , Ui

are employed to establish the strain
displacement transformation matrices
corresponding to the Cartesian strain
components, as in the analysis of 3-D
solids.

Transparency
19-32

• Using the expression oe.. derived earlier
the exact linear strain-di~placement
matrix JBl is obtained.

However, using ~ OUk,i OUk,} to develop the
nonlinear strain-displacement matrix
JBNl, only an approximation to the exact
second-order strain-displacement rotation
expression is obtained because the inter
nal element displacements depend non
linearly on the nodal point rotations.

The same conclusion holds for the U.L.
formulation.



• We still need to impose the condition
that the stress in the direction
"normal" to the shell mid-surface is
zero.

We use the direction of the director
vector as the "normal direction."

~s ~s

_ es x et
er = lies x etl12 ' es = et x er

We note: er, es, et are not mutually
perpendicular in general.

er , es , et are constructed to
be mutually perpendicular.

Topic Nineteen 19-19
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Then the stress-strain law used is, for
a linear elastic material,

1 v 0
1 0

o

symmetric

000
000
000

1-v 0 0
-2- k C2v) 0

k C2v)

Transparency
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k = shear correction factor

where
row 1 (e,)2 (m,)2 (n,)2 elm, m,n, n,e,------------------ --------- ---- ------------ -- ------ -- -----------

QSh = :

using

f 1 = cos (~1, gr) rn1 = cos (~, gr) n1 = cos (~a, gr)
f 2 = cos (~1, gs) rn2 = cos (~, gs) n2 = cos (~a, ~)

fa = cos (~1, ~t) rna = cos (~, ~t) na = cos (~a, ~t)



• The columns and rows 1 to 3 in CSh

reflect that the stress "normal" to the
shell mid-surface is zero.

• The stress-strain matrix for plasticity
and creep solutions is similarly
obtained by calculating the stress
strain matrix as in the analysis of 3-D
solids, and then imposing the
condition that the stress "normal" to
the mid-surface is zero.

• Regarding the kinematic description of
the shell element, transition elements
can also be developed.

• Transition elements are elements with
some mid-surface nodes (and
associated director vectors and five
degrees of freedom per node) and
some top and bottom surface nodes
(with three translational degrees of
freedom per node). These elements
are used

- to model shell-to-solid transitions
- to model shell intersections

Topic Nineteen 19-21

Transparency
19-37

Transparency
19-38



19-22 Beam, Plate and Shell Elements - Part I

Transparency
19-39

a) Shell intersection
Transparency

19-40

•

b) Solid-shell intersection

• •
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• Formulation of isoparametric (degenerate) beam
elements for large displacements and rotations

• A rectangular cross-section beam element of variable
thickness; coordinate and displacement interpolations

• Use of the nodal director vectors

• The stress-strain law

• Introduction of warping displacements

• Example analysis: 180 degrees, large displacement
twisting of a ring

• Example analysis: Torsion of an elastic-plastic cross
section

• Recommendations for the use of isoparametric beam and
shell elements

• The phenomena of shear and membrane locking as
observed for certain elements

• Study of solutions of straight and curved cantilevers
modeled using various elements

• An effective 4-node shell element (the MITC4 element)
for analysis of general shells

• The patch test, theoretical and practical considerations

• Example analysis: Solution of a three-dimensional
spherical shell

• Example analysis: Solution of an open box

• Example analysis: Solution of a square plate, including
use of distorted elements

• Example analysis: Solution of a 30-degree skew plate

• Example analysis: Large displacement solution of a
cantilever
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Contents:
(continued)

Textbook:

Example:

References:

• Example analysis: Collapse analysis of an I-beam in
torsion

• Example analysis: Collapse analysis of a cylindrical shell

Sections 6.3.4, 6.3.5

6.18

The displacement functions to account for warping in the rectangular
cross-section beam are introduced in

Bathe, K. J., and A. Chaudhary, "On the Displacement Formulation of
Torsion of Shafts with Rectangular Cross-Sections," International
Journal for Numerical Methods in Engineering, 18, 1565-1568, 1982.

The 4-node and 8-node shell elements based on mixed interpolation
(i.e., the MITC4 and MITC8 elements) are developed and discussed in

Dvorkin, E., and K. J. Bathe, "A Continuum Mechanics Based Four
Node Shell Element for General Nonlinear Analysis," Engineering
Computations, 1, 77-88, 1984.

Bathe, K. J., and E. Dvorkin, "A Four-Node Plate Bending Element
Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation,"
International Journalfor Numerical Methods in Engineering, 21, 367
383,1985.

Bathe, K. J., and E. Dvorkin, "A Formulation of General Shell Ele
ments-The Use of Mixed Interpolation of Tensorial Components,"
International Journalfor Numerical Methods in Engineering, in press.

The I-beam analysis is reported in

Bathe, K. J., and P. M. Wiener, "On Elastic-Plastic Analysis of I-Beams
in Bending and Torsion," Computers & Structures, 17, 711-718, 1983.

The beam formulation is extended to a pipe element, including ovali
zation effects, in

Bathe, K. J., C. A. Almeida, and L. W. Ho, "A Simple and Effective Pipe
Elbow Element-Some Nonlinear Capabilities," Computers & Struc
tures, 17, 659-667, 1983.



FORMULATION OF
ISOPARAMETRIC

(DEGENERATE) BEAM
ELEMENTS

• The usual Hermitian beam elements
(cubic transverse displacements,
linear longitudinal displacements) are
usually most effective in the linear
analysis of beam structures.

• When in the following discussion we
refer to a "beam element" we always
mean the "isoparametric beam
element."

• The isoparametric formulation can be
effective for the analysis of

- Curved beams
- Geometrically nonlinear problems
- Stiffened shell structures

(isoparametric beam and shell
elements are coupled compatibly)

• The formulation is analogous to the
formulation of the isoparametric
(degenerate) shell element.
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Consider a beam element with a
rectangular cross-section:

ak = thickness at
node k
in t-direction

bk = thickness at
node k
in s-direction

Consider a beam element with a
rectangular cross-section:

ak = thickness at
node k
in t-direction

bk = thickness at
node k
in s-direction
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Consider a beam element with a
rectangular cross-section: Transparency

20-5

ak = thickness at
node k
in t-direction

bk = thickness at
node k
in s-direction

X2

t~ = director vector in s-direction
t~ = director vector in t-direction

ak = thickness at
node k
in t-direction

bk = thickness at
node k
in s-direction

Consider a beam element with a
rectangular cross-section:

X2

t~~ = director vector in s-direction

t'i~ = director vector in t-direction

Transparency
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where

tv~ = direction cosines of the director
vector in the t-direction, of node
k at time t

tV~i = direction cosines of the director
vector in the s-direction, of node
k at time t

The coordinates of the material
particles of the beam are interpolated as

N N
t ~htk t~ htVkXi = ~ k Xi + 2 ~ ak k ti

k=1 k=1
N

+ ~ k~1 bk hk tV~i

Transparency
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N t N
tUi = }: hk tur + 2 }: ak hk CV~ - °V~)

k=1 k=1
N

+ 2s L bk hk CV~i - °V~i)
k=1

The vectors °V~ and °V~ can be
calculated automatically from the initial
geometry of the beam element if the
element is assumed to lie initially in a
plane.



Also

U. - t+dtX· - tx·
1- I I

N t N S N

= ~ hk u~ + -2 ~ ak hk V~ + -2 ~ bk hk V~i
k=1 k=1 k=1

where v~ and V~i are increments in the
direction cosines of the vectors tvr and
tv~. These increments are given Tn
terms of the incremental rotations ftk,
about the Cartesian axes, as

Vr = ftk x tvr ; V~ = ftk X tv~

• Using the above displacement and geometry
interpolations, we can develop the strain
displacement matrices for the Cartesian strain
components. A standard transformation yields
the strain-displacement relations corresponding
to the beam coordinates TI, E, ,.

Topic 1\venty 20-7
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• The stress-strain relationship used for
linear elastic material conditions is

TJ~ TJ~ - components

o 0]Gk 0
o Gk

Transparency
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k = shear correction factor

since only the one normal and two
transverse shear stresses are assumed
to exist.

• The material stress-strain matrix for
analysis of elasto-plasticity or creep
would be obtained using also the
condition that only the stress
components (T1TJ) , (TJ~) and (TJ~) are
non-zero.
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exact warping
displacements
for square
section

exact warping
displacements
for infinitely
narrow section

• Note that the kinematic assumptions In the
beam element do not allow - so far - for
cross-sectional out-of-plane displacements
(warping). In torsional loading, allowing for
warping is important.

• We therefore amend the displacement
assumptions by the following displacements:

t. u,

Torsion constant k in formula,
T= k GO a3b

Transparency
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k

a
Analytical value

(Timoshenko) ADINA

1"0
2"0
4"0

10·0
100"0

0'141
0"229
0"281
0"312
0'333

0"141
0"230
0"289
0'323
0"333
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Example: Twisting of a ring

All dimensions in inches
thickness = 0.2
E=3 x 105 psi
v=0.3

0.2

Transparency
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Finite element mesh: Twelve 4-node
iso-beam elements

4-node
element

ex prescribed
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Demonstration
Photograph
20-1
Close-up of

;' ring deformations

Use the T.L. formulation to rotate the ring
180 degrees: Transparency

20-17

Force-deflection curve

Moment
(Ib-in)

50

25

O~------I----------i--

o 00 100

Rotation (degrees)
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Pictorially, for a rotation of 180 degrees,
we have

Top view Side view

----- ........ ....
'\

\
\
\

I
I

I
/

/
/

/



MATERIAL DATA:

GREENBERG et. a!.

E= [ [I + (lgo)2n]
E = IB,600i n=9

ADINA:
E =18,600; 11=0.0

CTy=93.33 i ET=900

'Ibpic Twenty 20-13

Slide
20-1

Elastic-plastic analysis of torsion problem

T/k
0.35

2.0 4.0 6.0
G8/k

ADINA

10.0

Slide
20-2

Solution of torsion problem
(k = 1OO/~ 0 = rotation per unit length)
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Use of the isoparametric beam and
shell elements

• The elements can be programmed for
use with different numbers of nodes
- For the beam,

2, 3 or 4 nodes
- For the shell,

4, 8, 9, "', 16 nodes

• The elements can be employed for
analysis of moderately thick structures
(shear deformations are approximately
taken into account).

• The elements can be used for
analysis of thin structures - but then
only certain elements of those
mentioned above should be used.

For shells: Use only the 16-node
element with 4 x 4 Gauss
integration over the mid-

X3 surface.

r

integration point



For beams:

Use 2-node beam element with 1-point
Gauss integration along r-direction,

or
Use 3-node beam element with 2-point
Gauss integration along r-direction,

or
Use 4-node beam element with 3-point
Gauss integration along r-direction.

The reason is that the other elements
become overly (and artificially) stiff
when used to model thin structures and
curved structures.

Two phenomena occur:

• Shear locking

• Membrane locking

Topic Twenty 20-15
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• The 2-, 3- and 4-node beam
elements with 1-, 2- and 3-point Gauss
integration along the beam axes do
not display these phenomena.

• The 16-node shell element with 4 x 4
Gauss integration on the shell mid
surface is relatively immune to shear
and membrane locking (the element
should not be distorted for best
predictive capability).

• To explain shear locking, consider a
2-node beam element with exact
integration (2-point Gauss integration
corresponding to the r-direction).

r=-1 r=O
Transverse displacement:

1 1w = 2" (1 - r) W1 + 2" (1 + r) W2

Section rotation:
1 1

~ = 2" (1 - r) 61 + 2" (1 + r) 62



neutral axis
7

I,

Hence the transverse shear deformations
are given· by

"Y=f~-~
aw
ax

x

Consider now the simple case of a
cantilever subjected to a tip bending
moment, modeled using one 2-node

element:~. Ih pM
L

@16, = w, = 0 2)M

1
Here 13 = "2 (1 + r) 62

1 1
'Y = [w2 - "2 (1 + r) 92

Topic Twenty 20-17
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We observe:

• Clearly, 'Y cannot be zero at all points
along the beam, unless 62 and W2

are zero. But then also ~ would be
zero and there would be no bending
of the beam.

• Since for the beam
- bending strain energy oc: h3

- shear strain energy oc: h
any error in the shear strains (due to
the finite element interpolation
functions) becomes increasingly more
detrimental as h becomes small.

• For the cantilever example, the
shear strain energy should be zero.
As h decreases, the relative error in
the shear strain increases rapidly
and in effect, introduces an artificial
stiffness that makes the model
"lock."

h/L finite element solution
L = 100 Oanalytical (exact integration)

-
9.6 x 10-7 3.2 X 10-70.50

0.10 1.2 x 10-4 2.4 X 10-6

0.01 1.2 x 10-1 2.4 X 10-5



• Although we considered only one
element in the solution, the same
conclusion of locking holds for an
assemblage of elements.

~ ••• \ ••••••• ?)M
each element should carry
a constant bending moment

Example: Beam locking study

~ ......... JM
n equally spaced elements

L=10 m
Square cross-section, height = 0.1 m
Two-node beam elements,
full integration

Topic Twenty 20-19

Transparency
20-29

Transparency
20-30



20-20 Beam, Plate and Shell Elements - Part II

Transparency
20-31

Plot tip deflection as a function of the
number of elements:

32.00 Beam theory solution

10.008.006.004.002.00
'10'

~Finiteelement solution
(2-node beam elements,

full integration)

I~Height of element = Length of element

o+--;.I_.---...,.--~~--r---r--r----r----.-.
o

8.00

24.00

16.00
Tip

deflection
(m)

Number of elements

Transparency
20-32 Beam theory solution

0.3 1------------

Tip
deflection

(m)

0.2

0.1
Finite element solution

\
10 20 30

Number of elements



A remedy for the 2-node beam element is to
use only 1-point Gauss integration (along the
beam axis).
This corresponds to assuming a constant
transverse shear strain, (since the shear strain
is only evaluated at the mid-point of the beam).

The bending energy is still integrated accurately

(since : is correctly evaluated).

h/L finite element solution
L = 100 6analytical (1-point integration)

0.50 9.6 x 10-7 9.6 X 10-7

0.10 1.2 x 10-4 1.2 X 10-4

0.01 1.2 x 10-1 1.2 X 10-1

• The 3- and 4-node beam elements evaluated
using 2- and 3-point integration are similarly
effective.

• We should note that these beam elements
based on "reduced" integration are reliable
because they do not possess any spurious
zero energy modes. (They have only 6 zero
eigenvalues in 3-D analysis corresponding to
the 6 physical rigid body modes).

• The formulation can be interpreted as a
mixed interpolation of displacements and
transverse shear strains.

Topic Twenty 20-21
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• Regarding membrane-locking we
note that in addition to not exhibiting
erroneous shear strains, the beam
model must also not contain errone
ous mid-surface membrane strains in
the analysis of curved structures.

• The beam elements with reduced
integration also do not "membrane
lock~'

Consider the analysis of a curved
cantilever:



The exactly integrated 3-node beam
element, when curved, does contain
erroneous shear strains and erroneous
mid-surface membrane strains. As a
result, when h becomes small, the
element becomes very stiff.

finite element finite element
solution: 3-node solution: 3-node

h/R 9analytical element, 3-point element, 2-point
R = 100 (a = 45°) integration integration

0.50 7.5 x 10-7 6.8 X 10-7 7.4 X 10-7

0.10 9.4 x 10-5 2.9 X 10-5 9.4 X 10-5

0.01 9.4 x 10-2 4.1 X 10-4 9.4 X 10-2

• Similarly, we can study the use of the
4-node cubic beam element:

finite element finite element
h/R 9anaJytical solution: 4-node solution: 4-node

R = 100 (a = 45°) element, 4-point element, 3-point
integration integration

0.50 7.5 x 10-7 7.4 X 10-7 7.4 X 10-7

0.10 9.4 x 10-5 9.4 X 10-5 9.4 X 10-5

0.01 9.4 x 10-2 9.4 X 10-2 9.4 X 10-2

We note that the cubic beam element
performs well even when using full
integration.
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Considering the analysis of shells, the
phenomena of shear and membrane
locking are also present, but the
difficulty is that simple "reduced"
integration (as used for the beam
elements) cannot be recommended,
because the resulting elements contain
spurious zero energy modes.

For example, the 4-node shell element
with 1-point integration contains 6
spurious zero energy modes (twelve
zero eigenvalues instead of only six).

Such spurious zero energy modes can
lead to large errors in the solution that
- unless a comparison with accurate
results is possible - are not known and
hence the analysis is unreliable.



• For this reason, only the 16-node
shell element with 4 x 4 Gauss
integration on the shell mid-surface
can be recommended.

• The 16-node element should, as
much as possible, be used with the
internal and boundary nodes placed
at their ~rd points (without internal
element distortions). This way the
element performs best.

• Recently, we have developed
elements based on the mixed
interpolation of tensorial components.

• The elements do not lock, in shear or
membrane action, and also do not
contain spurious zero energy modes.

• We will use the 4-node element,
referred to as the MITC4 element, in
some of our demonstrative sample
solutions.
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The MITC4 element:

r

Transparency
20-44

• For analysis of plates

• For analysis of moderately thick
shells and thin shells

• The key step in the formulation is to
interpolate the geometry and
displacements as earlier described,
but

- To interpolate the transverse shear
strain tensor components
separately, with judiciously selected
shape functions

- To tie the intensities of these
components to the values
evaluated using the displacement
interpolations



rt transverse shear strain tensor
component interpolation

R?77,
evaluated from

displacement interpolations

st transverse shear strain tensor
component interpolation

s

Topic Twenty 20-27
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The MITC4 element

• has only six zero eigenvalues (no
spurious zero energy modes)

• passes the patch test

What do we mean by the patch test?
The key idea is that any arbitrary
patch of elements should be able to
represent constant stress conditions.
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THE PATCH TEST
Transparency

20-47
• We take an· arbitrary patch of

elements (some of which are geo
metrically distorted) and subject
this patch to
- the minimum displacementlrotn.

boundary conditions to eliminate
the physical rigid body modes,
and

- constant boundary tractions,
corresponding to the constant
stress condition that is tested.

Transparency
20-48 • We calculate all nodal point

displacements and element stresses.

The patch test is passed if the calcu
lated element internal stresses and
nodal point displacements are correct.



E=2.1 X 106

v=0.3
thickness = 0.01

.tX_2 (10,10)

r
10

L_------..... (10,0)

(0,0) 1f-----10----.\ X1

PATCH OF ELEMENTS CONSIDERED

t

-0- 0
1

MEMBRANE TESTS

t

101 0 -0-
!

BENDING/TWISTING TESTS
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Example: Spherical shell

radius = 10.0
thickness = 0.04
E=6.825x 107

v=0.3

Transparency
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Selection of director vectors:
• One director vector is generated

for each node.

• The director vector for each node
is chosen to be parallel to the
radial vector for the node.

• In two dimensions:

vector

~-------x



Selection of displacement boundary
conditions:

• Consider a material fiber that is
parallel to a director vector. Then, if
this fiber is initially located in the x-z
plane, by symmetry this fiber must
remain in the x-z plane after the shell
has deformed:

Topic 1\venty 20-31

Transparency
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z
material ~ .,-......
fiber at time 0 _tv~

material fiber
at time t

x

Finite element mesh: Sixty-four MITC4 elements Transparency
20-54

Symmetric
boundary conditions

(y = 0)

~

/
1.0

z

xAy
Symmetric

boundary conditions
~(x=O)

Uz = 0 (to prevent rigid-body motion)



20-32 Beam, Plate and Shell Elements - Part II

Transparency
20-55

This condition is applied to each node
on the x-z plane as follows:

z

Transparency
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• A similar condition is applied to
nodes initially in the y-z plane.

• These boundary conditions are
most easily applied by making
euch node in the x-z or y-z
plane a 6 degree of freedom
node. All other nodes are 5
degree of freedom nodes.

• To prevent rigid body translations
in the z-direction, the z displace
ment of one node must be set
to zero.



z
L y

Linear elastic analysis results:

• Displacement at point of load
application is 0.0936 (analytical
solution is 0.094).

• Pictorially,

Exam~: Analysis of an open (five-sided)
box:

Box is placed open-side-down/Add on a
frictionless surface.~ Uniform pressure

Box is modeled
using shell
elements

rigid,
frictionless
surface
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Modeling of the box with shell
elements:

- Choose initial director vectors.

- Choose 5 or 6 degrees of freedom
for each node.

- Choose boundary conditions.

Transparency
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- Instead of input of director vectors,
one for each node, it can be more
effective to have ADINA generate
mid-surface normal vectors.

- If no director vector is input for a
node, ADINA generates for each
element connected to the node a
nodal point mid-surface normal
vector at that node (from the
element geometry).

- Hence, there will then be as many
different nodal point mid-surface
normal vectors at that node as
there are elements connected to
the node (unless the surface is
flat).



Nodal point mid-surface normal vectors for the box:

- We use the option of automatic generation of
element nodal point mid-surface normal vectors.

- At a node, not on an edge, the result is one
mid-surface normal vector (because the surface
is flat).

- At an edge where two shell elements meet,
two mid-surface normal vectors are generated
(one for each element). ---s:;-- one mid-surface

normal vector
used at this node

two mid-surface
normal vectors
used at this node

Degrees of freedom:

Topic Twenty 20-35

Transparency
20-61

Transparency
20-62

6 degrees
of freedom no rotational

stiffness for
this degree
of freedom
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Note added in preparation ojstudy-guide
In the new version of ADINA (ADINA 84 with an update inserted, or ADINA 86)

the use of the 5 or 6 shell degree of freedom option has been considerably automatized:
- The user specifies whether the program is to use 5 or 6 degrees of freedom at each

shell mid-surface node N
IGL(N).EQ.O-6 d.o.f. with the translations and rotations corresponding to the

global (or nodal skew) system
IGL(N).EQ.l-+5 d.o.f. with the translations corresponding to the global (or nodal

skew) system but the rotations corresponding to the vectors VI
and V2

- The user (usually) does not input any mid-surface normal or director vectors. The
program calculates these automatically from the element mid-surface geometries.

- The user recognizes that a shell element has no nodal stiffness corresponding to
the rotation about the mid-surface normal or director vector. Hence, a shell mid
surface node is assigned 5 d.o.f. unless

a shell intersection is considered
a beam with 6 d.o.f. is coupled to the shell node
a rotational boundary condition corresponding to a global (or skew) axis is to be
imposed
a rigid link is coupled to the shell node

For further explanations, see the ADINA 86 users manual.

-: admissible
-*-: deleted

Displacement boundary conditions:
Box is shown open-side-up.

f

+
representative node
not at a corner

Transparency
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Consider a linear elastic static analysis
of the box when a uniform pressure
load is applied to the top.
We use the 128 element mesh shown
(note that all hidden lines are removed
in the figure): lv

x

4-node
shell
element

We obtain the result shown below
(again the hidden lines are removed):

• The displacements in this plot are
highly magnified.

Topic 1\venty 20-37
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Slide
20-3

o

.,. ERROR -5
IN CENTER

DISPLACFMENT

-10

-15

.--~
II "Q3 L[Eg:• N"2

I--

2
N

4 6

Slide
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Simply-supported plate under uniform pressure,
Uh = 1000

o11~t==t==+====t====t1

Of. ERROR -51---+---+---...,1---+---+--+----1
IN CENTER

OISPLACEMENT

-101---+---+---+--+---+---+--1

-15 L...-_....L..._~_--J,__~_....L..._......I.._---1

2 N 4 6

Simply-supported plate under concentrated load
at center, Uh = 1000
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.,. ERROR -5
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DISPLACEMENT
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2
N

4 6

Clamped plate under uniform pressure, Uh = 1000

~-
~

~

V
/

/

o

"to ERROR -5
IN CENTER

DISPLACEMENT

-10

-15
2

N
4 6

Slide
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Clamped plate under concentrated load at
center. Uh = 1000
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Slide
20-7

Mesh I

/I =0.3

Mesh 1\

M~"M I
MKIRClIIIOI.".' C

Mesh I

Mesh II

Mesh I

Mesh"

0·93

Hli

0.85

1.02

Slide
20-8

Effect of mesh distortion on results in analysis of
a simply-supported plate under uniform pressure

(L/h = 10(0)

Top view
r

SIMPLY SUPPORTED EDIES

E.50 0 10·

~"'0.5

b .1

thickn...·O.OI

unlf.'1Il pr•••ur. p"'1

IlOUNDARY CONDmON ••0

ON FOUR EDGES

Analysis of skew plate



MESH .FEM;' MO FEM~ MO FEM AMOe ·e Mmax Mmax Mmln Mmln

4X4 0.879 0.873 0.852

8X8 0.871 0.928 0.922

16X 16 0.933 0.961 0.919

32X32 0.985 0.989 0.990

Solution of skew plate at point C using
uniform skew mesh

2 X 2 MESH

MESH FEM/ wMO FEM/ MO FEM/ MO
"c c Mmox Mmex Mmm Mmm

2X2 0.984 0.717 0.602

4 X4 0.994 0.935 0.878

Solution of skew plate using a more effective mesh
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Slide
20-11

11----- L ----.I/-r

T
L = 12 IN
I = 1/12 IN 4

A = I IN2

E = 3.0x 10
7

PSI
11= 0
M = CONC E NTRATE D

END MOMENT

Large displacement analysis of a cantilever

1.0

Slide
20-12

RATIOS

u/L, oIL, </>/2"

0.2

0.4 0.5
MOMENT PARAMETER '1 = ML/2"E I

Response of cantilever



1.0
__ ANALYT. SOLN.

u 0.8L
v w/L

V
w 0.6 V

L Z 7
L

v.

<t>
9J o u/L

211'

TWO 4-NODE ELEMENT MODEL

ML
27i'IT'

Large displdcement/rotation analysis of a
canti 1ever
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THREE 4- NODE ELEMENT MODEL
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MATERIAL DATA:

Slide E 30 , 10' psi

20-15
"

0 0.3

E 0 0.0
T

Z a 0 30 '10 3 psiy

...!1D
'IN

T 0.91N

iOi'N
1,0 IN

Analysis of I-beam

Slide
20-16

- FREE END

Iso-beam model



Shell model
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I-beam
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~SO-beam
model

MERCHANT'S
UPPER BOUND

"SAND HEAP"
~

;
Shell
model

.-....&._--------~

200

100

300

T IN-LBS

Slide
20-19

o 0.10 020 0.30
8. RADIANS

0.40

Rotation of I-beam about X -axis for increasing
torsional moment.

Slide
20-20

IXI UNI'ORM MESH USED
TO REPRESENT AREA ABCD

E =21,000
1/=0

Er O

aY=4.2

L 0:15,200

R 0: 7,600

1/)= 40

fhickn.u=76

Large deflection elastic-plastic analysis of a cylin
drical shell



2

o Kr8keland

-MITC4

4 POINT GAUSS INTEGRATION
THROUGH ELEMENT THICKNESS

50 100 150 200

we

Response of shell
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Topic 21

A Demonstrative
Computer Session
Using ADINA
Linear Analysis

• Use of the computer program ADINA for finite element
analysis, discussion of data preparation, program
solution, and display of results

• Capabilities of ADINA

• Computer laboratory demonstration-Part I

• Linear analysis of a plate with a hole for the stress
concentration factor

• Data input preparation and mesh generation

• Solution of the model

• Study and evaluation of results using plots of stresses,
stress jumps, and pressure bands

Appendix

The use of the ADINA program is described and sample solutions are
given in

Bathe, K. J., "Finite Elements in CAD - and ADINA," Nuclear
Engineering and Design, to appear.

ADINA, ADINAT, ADINA-IN, and ADINA-PLOT Users Manuals,
ADINA Verification Manual, and ADINA Theory and Modeling Guide,
ADINA Engineering, Inc., Watertown, MA 02172, U.S.A.

Proceeding~ of the ADINA Conferences, (Bathe, K. J., ed.)
Computers & Structures

13, 5-6, 1981
17, 5-6, 1983
21, 1-2, 1985



21-2 Computer Session Using ADINA - Linear Analysis 

References: The use of pressure band plots to evaluate meshes is discussed in 
(continued) Sussman, T., and K. J. Bathe, "Studies of Finite Element Procedures

Stress Band Plots and the Evaluation of Finite Element Meshes," Engi
neering Computations, to appear. 



A FINITE ELEMENT
ANALYSIS - LINEAR

SOLUTION
• We have presented a considerable

amount of theory and example solu
tion results in the lectures.

• The objective in the next two lec
tures is to show how an actual finite
element analysis is performed on the
computer.

• We cannot discuss in detail all the
aspects of the analysis, but shall
summarize and demonstrate on the
computer the major steps of the
analysis, and concentrate on

- possible difficulties
- possible pitfalls
- general recommendations

Topic Twenty-one 21-3

Transparency
21-1

Transparency
21-2



21-4 Computer Session Using ADINA - Linear Analysis

Transparency
21-3 We will use as the example problem

the plate with a hole already consid
ered earlier, and perform linear and
nonlinear analyses

elastic analysis to obtain the
stress concentration factor
elasto-plastic analysis to estimate
the limit load
an analysis to investigate the effect
of a shaft in the plate hole

Plate with hole: Schematic drawing

Transparency
21-4

1 E = 207000 MPa
j-----:.---+777Jjrim~ v = 0.3

thickness = 0.01 m

plane stress
conditions

:-:~~~t'"We consider thisquarter of the
---+ plate and

use symmetry
conditions

0.01m-+-_.J

0.1
m

I. 0.1m
,I



• The first step for a finite element
analysis is to select a computer pro
gram. We use the ADINA system.

ADINA-IN to prepare, generate
the finite element
data

ADINA to solve the finite
element model

ADINA-PLOT to display numeri-
cally or graphically
the solution results

Schematically:

graphics
..>display

terminal

User work-station

Topic 1\venty-one 21-5

Transparency
21-5

Transparency
21-6



21-6 Computer Session Using ADINA - Linear Analysis

Transparency
21-7

I I generated
User - ADINA-IN - ADINA

input file

• User types into terminal ADINA-IN
commands interactively or for batch
mode processing. User checks input
and generated data on graphics
display terminal.

Transparency
21-8

• ADINA-IN generates the input data
for ADINA.

• The input data is checked internally
in ADINA-IN for errors and consis
tency and is displayed as per
request by the user.

• The degree of freedom numbers are
generated (for a minimum band
width).



--I ADINA

Topic 1\ventyo()ne 21-7

Transparency
21-9

• User runs ADINA to calculate the
response of the finite element
model. ADINA writes the model data
and calculated results on an output
file and stores the model data and
calculated results on the porthole
file.

ADINA-PLOT I
~

User _--;1
display output
data, numerically
or graphically

Transparency
21-10

• User runs ADINA-PLOT to access
the output data and display selected
results; displacements, stresses,
mode shapes, maxima, ...
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Transparency
21-11

Transparency
21-12

A brief overview of ADINA

• Static and dynamic solutions

• Linear and nonlinear analysis

• Small and very large finite element
models can be solved.

The formulations, finite elements and
numerical procedures used in the pro
gram have largely been discussed in
this course.

DISPLACEMENT
ASSUMPTIONS

• Infinitesimally small displacements

• Large displacements/large rotations
but small strains

• Large deformations/large strains



MATERIAL MODELS
Isotropic Linear Elastic

Orthotropic Linear Elastic

Isotropic Thermo-Elastic

Curve Description Model for Analysis
of Geological Materials

Concrete Model

MATERIAL MODELS

Isothermal Plasticity Models

Thermo-Elastic-Plastic and Creep
Models

Nonlinear Elastic, Incompressible
Models

User-Supplied Models

Topic Twenty-one 21-9

Transparency
21-13

Transparency
21-14
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Transparency
21-15 z

ONE-DIMENSIONAL
ELEMENT

I......-.-! RING ELEMENT

x

r-------.... v

Truss and Cable Element
(2,3, or 4 nodes)

Transparency
21-16

z

v

Two-Dimensional Solid Element
(variable number of nodes)



z

x

y

z

)(

Three-Dimensional Solid Element
(variable number of nodes I

y

Two-Node Beam Element

Topic 1\ventY'one 21-11

Transparency
21-17

Transparency
21-18
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Transparency
21-19

z

/

r----V

x

Isoparametric Beam Element
(2,3,4 nodes)

Transparency
21-20

z

AT EACH NODE 6 BEAM
DEGREES OF FREEDOM
PLUS OVALIZATION

~-----v DEGREES OF FREEDOM
x

Pipe Element with Ovalization



16 Node Element

}-,
x

4 Node Element

ELEMENTS ARE USED WITH
5 OR 6 DEGREES OF
FREEDOM PER NODE

Topic 1\venty-one 21-13

Transparency
21-21

Plate and Shell Elements

A SUMMARY OF IMPORTANT
OBSERVATIONS

• We need to check the finite element
data input carefully

prior to the actual response
solution run, and
after the response solution has
been obtained by studying
whether the desired boundary
conditions are satisfied, whether
the displacement and stress
solution is reasonable (for the
desired analysis).

Transparency
21-22
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Transparency
21-23

Transparency
21-24

• We need to carefully evaluate and
interpret the calculated response

study in detail the calculated dis
placements and stresses along
certain lines, study stress jumps

stress averaging, stress smooth
ing should only be done after the
above careful evaluation

Data for Construction of
64 Element Mesh:

100 MPa

E = 207,000 MPa
v = 0.3
Plane stress
thickness = 0.01 m



Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

Topic Twenty-one 21-15

Transparency
21-25

eight-node
isoparametric
element

Demonstration
Photograph

21-1
Finite Element Research

Group Laboratory
computer configuration
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ADINA
Demonstration

21-1
Input data

Transparency
21-26

(Repeat 21-25)

QUARTER PLATE WITH HOLE - 64 ELEMENTS
2261001110 1 0 1 1 1.0000000

C... MASTER CONTROL
99999 0 0 1 0 0 50 30.
C••* 3 LOAD CONTROL

o 4 0 0 0 0 0 0
C*.* 4 MASS AND DAMPING CONTROL

o 0 0 0 .0 .0
C••* 5 EIGENVALUE SOLUTION CONTROL

o 0 0 0 0 0
C... 6 TIME INTEGRATION METHOD CONTROL

o 20.500000000.25000000 0 0
C••* 7 INCREMENTAL SOLUTION CONTROL

1 1 210 15.001000000.010000000.05
C.*. 8 PRINT-OUT CONTROL

11111 0

Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

eight-node
isoparametric
element



Stress vector output: Example

Topic Twenty-one 21-17

Transparency
21-27

integration
point ~

/ maximum principal stress
,/----' (tensile)

minimum principal stress
(compressive)

The length of the line is proportional
to the magnitude of the stress.

TIME 1.000 DMAX ,300

ADINA
Demonstration

21-2
Deformed mesh
plot
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Plate with hole: Schematic drawing

Transparency
21-28

0.1
m

0.01 m--+----./

0.1m
.1

E = 207000 MPa
v =0.3

thickness = 0.01 m

We consider this
quarter of the
plate and
use symmetry
conditions

plane stress
conditions

Transparency
21-29

(Repeat 21-25)

Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

~eight-node

isoparametric
element



s-- stress computed at closest
integration point

Stress point numbers and integration
point numbers for element 57

2 integration
point

6 3
X

2
X

3 1 6 5x 5 X
4 X

7
x

987 X Xx
4

P 8
stress point

Behavior of stresses near the stress
concentration:

radius
(J of s- stress computed at nodal point

hole

length of element

Topic Twenty-one 21-19

Transparency
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Transparency
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distance z = 0
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Transparency
21-32

Maximum principal stress calculation:

_ {1yy + {1zz + !({1yy - {1ZZ)2 + 2
{11 - 2 -V. 4 {1yz

Transparency
21-33

(Repeat 21-30)

Stress point numbers and integration
point numbers for element 57

integration
point

2

6
2
X

5
X

8 9
X x

8

3

4--_~t-------1

.:5
stress POint



RESULTANT • SMAX ARITHMETIC EXPRESSION.

Topic Twenty-one 21-21

lTVV+TZZI ITWO+SllRT IITVV-TZZ) * lTVV-TZZ) IFDUR+TVZHVZ I

EXTREME ELEMENT RESULTS PER ELEMENT GROUP FOR WHOLE MODEL

TVV • VV-STRESS
TZZ • ZZ-STRESS
TVZ • VZ-STRESS
TWO • 2.1Il1ll1ll00
FOUR • 4.1Il1ll1ll1ll1ll

INTERVAL TSTART- 1.1Il1ll1ll1ll TEND= 1. 0000 SCANNED FOR ABSOLUTE MAXIMUM

ADINA
Demonstration

21-3
Close-up of
calculations

ELEMENT BROUP NO. 1 (2-D SOLID) LISTED RESULTS ARE MEASURED IN
GLOBAL COORD I NATE SYSTEM

RESULTANT SMAX ELEMENT POINT TIME STEP

Ill. 34~ISIE+1Il3 ~7 4 Ill. 1IIlIIlIllIllE+1Il1

Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

Transparency
21-34

(Repeat 21-25)

eight-node
isoparametric
element
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Transparency
21-35

(Repeat 2-33)

Transparency
21-36

(Repeat 2-35)

• To be confident that the stress
discontinuities are small everywhere,
we should plot stress jumps along each
line in the mesh.

• An alternative way of presenting
stress discontinuities is by means of
a pressure band plot:
- Plot bands of constant pressure

where

pressure = - (Txx + ; yy + Tzz)

Sixty-four element mesh: Pressure band
plot

H~
5 MPa 5 MPa



A SUMMARY OF IMPORTANT
OBSERVATIONS

• We need to check the finite element
data input carefully

- prior to the actual response
solution run, and

- after the response solution has
been obtained by studying
whether the desired boundary
conditions are satisfied, whether
the displacement and stress
solution is reasonable (for the
desired analysis).

Topic 1\venty-one 21-23

ADINA
Demonstration

21-4
Close-up of

pressure bands

. Transparency
21-37

(Repeat 21-221



21-24 Computer Session Using ADINA - Linear Analysis

Transparency
21·38

(Repeat 21-23) • We need to carefully evaluate and
interpret the calculated response

study in detail the calculated dis
placements and stresses along
certain lines, study stress jumps

stress averaging, stress smooth
ing should only be done after the
above careful evaluation
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Topic 22

A Demonstrative
Computer Session
Using ADINA-
Nonlinear Analysis

• Use of ADINA for elastic-plastic analysis of a plate with
a hole

• Computer laboratory demonstration-Part II

• Selection of solution parameters and input data
preparation

• Study of the effect of using different kinematic
assumptions (small or large strains) in the finite element
solution

• Effect of a shaft in the plate hole, assuming frictionless
contact

• Effect of expanding shaft

• Study and evaluation of solution results

Appendix

The use of the ADINA program is described and sample solutions are
given in

Bathe, K. J., "Finite Elements in CAD - and ADINA," Nuclear
Engineering and Design, to appear.

ADINA, ADINAT, ADINA-IN, and ADINA-PLOT Users Manuals,
ADINA Verification Manual, and ADINA Theory and Modeling Guide,
ADINA Engineering, Inc., Watertown, MA 02172, U.S.A.
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References:
(continued)

Proceedings of the ADINA Conferences, (K. J. Bathe, ed.)
Computers & Structures

13, No. 5-6, 1981
17, No. 5-6, 1983
21, No. 1-2, 1985

The contact solution procedure used in the analysis of the plate with
the shaft is described in

Bathe, K. J., and A. Chaudhary, "A Solution Method for Planar and
Axisymmetric Contact Problems," International Journal for Numeri
cal Methods in Engineering, 21, 65-88, 1985.
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A FINITE ELEMENT
ANALYSIS - NONLINEAR

SOLUTION
• We continue to consider the plate

with a hole.

• A nonlinear analysis should only be
performed once a linear solution has
been obtained.
The linear solution checks the finite
element model and yields valuable
insight into what nonlinearities might
be important.

Transparency
22-1

Plate with hole: Schematic drawing

Transparency
22-2

(Repeat 21-4)

plane stress
conditions

r////J'///'/J'///71""'-""'We consider this
quarter of the
plate and
use symmetry
conditions

1 E = 207000 MPa
r-~---f-7"TTn7-rrT77777I v = 0.3

thickness = 0.01 m

0.01m-+--.../

0.1
m

I.
0.1m

.1
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Transparency
22-3

(Repeat 21-25)

Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

eight-node
isoparametric
element

Transparency
22-4

• Some important considerations are
now

What material model to select
What displacement/strain
assumption to make
What sequence of load applica
tion to choose
What nonlinear equation solution
strategy and convergence criteria
to select



• We use the ADINA system to
analyse the plate for its elasto
plastic static response.

• We also investigate the effect on
the response when a shaft is
placed in the plate hole.

Some important observations:
• The recommendations given in the

linear analysis are here also appli
cable (see previous lecture).

• For the nonlinear analysis we need
to, in addition, be careful with the

- sequence and incremental
magnitudes of load application

- choice of convergence tolerances

Topic Twenty-two 22·5

Transparency
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Transparency
22-6
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Transparency
22-7

Transparency
22-8

Limit load calculations:

p

rTTTTl

o

LL..LLLJ
p

• Plate is elasto-plastic.

Elasto-plastic analysis:

Material properties (steel)
(T

740 -I--

(T

(MPa)
~

ET = 2070 MPa, isotropic hardening

E = 207000 MPa, v = 0.3

e
• This is an idealization, probably

inaccurate for large strain conditions
(e > 2%).



Load history:

650+---------++

Topic 1\venty·two 22·7

Transparency
22-9

Load
(MPa)

13 14 time

• Load is increased 50 MPa per load step.

• Load is released in one load step.

USER-SUPPLIED

MATERHlL 1 PLASTIC E=207000 NU=0.3 ET=2070 YIELD=740
MATERIAL 1 PLASTIC E=207000 NU=0.3 ET=2070 YIELD=740
DELETE EQUILIBRIUM-ITERATIONS
DELETE EQUILIBRIUM-ITERATIONS
ADINA
ADINA

ADINA
Demonstration

22-1
Input data
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Transparency
22-10

(Repeat 21-25)

Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

eight-node
isoparametric
element

Transparency
22-11

Load history:

650-+-------~+

Load
(MPa)

o~-------+-+---

o 13 14 time

• Load is increased 50 MPa per load step.

• Load is released in one load step.

• The BFGS method is employed for each load step.



Convergence criteria:

Energy:

d1!(i)T [t+~tB _ t+~tE(i-1)] < =

dU(1)T[t+~tR _ tF] - ETOl 0.001

Force:
Ilt+~tR _ t+~tF(i-1)112 < _

RNORM - RTOl - 0.01

(RNORM = 100 MPa x 0.05 m x 0.01 m)
~~~

nominal width thickness
applied
load

Topic Twenty-two 22-9

Transparency
22-12

ADINA
Demonstration

22-2
Plot of plasticity
in plate with hole



22·10 Computer Session Using ADINA - Nonlinear Analysis

Transparency
22-13

Stress vector output: Example

integration
point ~

/ maximum principal stress
/ .....-" (tensile)

-s-- minimum principal stress
(compressive)

ADINA
Demonstration

22-3
Close-up of stress

vectors around hole

The length of the line is proportional
to the magnitude of the stress.

ORIQ:tNAL _ BSCALE '987. A



Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

Topic 1\venty-two 22-11

Transparency
22-14

(Repeat 21-25)

eight-node
isoparametric
element

M.N.O. Materially-Nonlinear-
Only analysis

T.L. Total Lagrangian
formulation

U.L. Updated Lagrangian
formulation

Transparency
22-15
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Transparency
22-16

(Repeat 21-25)

Finite element mesh to be generated
using ADINA-IN:

• Mesh contains 64 elements,
288 nodes.

ADINA
Demonstration

22-4
Elasto-plastic load

displacement response

I
•

I
II

I..

eight-node
isoparametric
element



100 MPa

rTTTTl
Plate with shaft:

plate, /
E = 207000 MPa
v=0.3
thickness = 0.01 m
plane stress

conditions

long shaft,
E = 207000 MPa

b v =0.3
~ thickness=0.05 m

_~ plane strain
., conditions

Topic Twenty-two 22-13

Transparency
22-17

LLLLLJ
100 MPa

• The shaft is initially flush with the hole.

• We assume no friction between the shaft and
the hole.

Detail of shaft:

shaft .J
(collapsed 8-node

elements)

Transparency
22-18
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Transparency
22-19

ADINA
Demonstration

22-5
Deformed mesh

Solution procedure: Full Newton
iterations without
line searches

Convergence criteria:

Energy: ETOL = 0.001

Force: RTOL = 0.01 , RNORM = 0.05 N

Incremental contact force:

IILiB(i-1) -: LiB(i-2)112 < =
IILiR(,-1)112 - RCTOL 0.05

DEFORMED _ DSCALE 18641
TU1E 1.888 DtlAX .388



Plate with expanding shaft:

Topic Twenty-two 22-15

Elasto-plastic
plate ~

100 MPa

rTTTn/Shaft

./

~
100 MPa

Transparency
22-20

• The shaft now uniformly expands.

ADINA
Demonstration

22-6
Close-up of

deformations at
contact
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Glossary
of Symbols

• Glossary of Roman Symbols

• Glossary of Greek Symbols



Glossary of Roman Symbols

Glossary G-l

IA

C

Cjj

The Euclidean norm or "two-norm. "
For a vector a

1@l12 = ~f. (8k)2

When used above a symbol, denotes
"in the rotated coordinate system."

Cross-sectional dimensions of a beam
at nodal point k.

Cross-sectional area at time t.

A square matrix used in the BFGS
method.

Linear strain-displacement matrix
used in linear or M.N.O. analysis.

Linear strain-displacement matrix
used in the T.L. formulation.

Linear strain-displacement matrix
used in the D.L. formulation.

Intermediate matrices used to com
pute hBl; hBll contains the "initial
displacement effect."

Nonlinear strain-displacement ma
trix used in the T.L. formulation.

Nonlinear strain-displacement ma
trix used in the D.L. formulation.

The wave speed of a stress wave
(dynamic analysis).

Diagonal element corresponding to the
ith degree of freedom in the damping
matrix (dynamic analysis).

The damping matrix (dynamic
analysis).

c

CEP
iJ's

oCijrS

ONORM

OMNORM

OTOL

The Mooney-Rivlin material con
stants (for rubberlike materials).

Components of the Cauchy-Green
deformation tensor (basic concepts of
Lagrangian continuum mechanics).

Matrix containing components of the
constitutive tensor referred to a local
coordinate system.

Matrix containing components of the
constitutive tensor, used in linear and
M.N.O. analysis.

Matrix containing components of the
constitutive tensor oeyrs ,
used in the T.L. formulation.

Matrix containing components of the
constitutive tensor tCyrs •
used in the D.L. formulation.

Components of elastic constitutive ten
sor relating d<Ji~ to de~

Components of elasto-plastic consti
tutive tensor relating d<J, to ders

Components of tangent constitutive
tensor relating doS t to doErs

Components of tangent constitutive
tensor relating dlSt to dlE rs

Reference displacement used with
displacement convergence tolerance
DTOL (solution of nonlinear
equations).
DMNORM is the reference rotation
used when rotational degrees of
freedom are present.

Convergence tolerance used to mea
sure convergence of the displace
ments and rotations (solution of non
linear equations).
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det The determinant function, for
example, det J~ .

Strain hardening modulus (elasto
plastic analysis).

'dV A differential element of volume
evaluated at time t.

A differential element of volume
evaluated at time O.

Vector describing the 6rientation and
length of a differential material fiber at
time t (basic concepts of Lagrangian
continuum mechanics).

ETOL

f(x)

Convergence tolerance used to mea
sure convergence in energy (solution
of nonlinear equations).

A function that depends on X
(solution of nonlinear equations).

A vector function that depends on
the column vector U
(solution of nonlinear equations).

Vector describing the orientation and
length of a differential material fiber
at time 0 (basic concepts of Lagrangian
continuum mechanics).

IfF, IfF Components of externally applied
forces per unit current volume and unit
current surface area.

Effective creep strain, evaluated at
time t (creep analysis).

IF Yield function (elasto-plastic anal
ysis).

Components of infinitesimal strain ten
sor (linear and M.N.O. analysis).

IE Vector of nodal point forces equiva
lent to the internal element stresses.

inelastic
creep
plastic
thermal
viscoplastic

Unit vectors in the r, S, and t direc
tions (shell analysis).

Linear (in the incremental displace
ments) part of oE;;.
(T.L. formulation)

Vector of nodal point forces equiva
lent to the internal element stresses
(T.L. formulation).

Column vector containing the inertia
forces for all degrees of freedom
(dynamic analysis).

Column vector containing the elastic
forces (nodal point forces equivalent
to element stresses) for all degrees
of freedom (dynamic analysis).

Acceleration due to gravity.

Column vector containing the damp
ing forces for all degrees of freedom
(dynamic analysis).

Vector of nodal point forces equiva
lent to the internal element stresses
(U.L. formulation).

9

JE

Ee(t)

Eo(t)

of inelastic strains
time t (inelastic

Linear (in the incremental displace
ments) part of IE;;.

(U.L. formulation).

Various types
evaluated at
analysis):

IN

c
P

TH
VP

Ie!!'!
II'

le9
II'

Ie'"
II'

le}'H
II'

le\{P
II'

~r , ~s Unit vectors constructed so that
er , es, el
are - mutually orthogonal (shell
analysis).

Gab Shear modulus measured in the local
coordinate system a-b (orthotropic
analysis).

E Young's modulus.
h Cross-sectional height (beam ele

ment).

Young's moduli in the a and b direc
tions (orthotropic analysis).

Interpolation function correspond
ing to nodal point k.



H

11 , b, h

k

IK

Displacement interpolation matrix
(derivation of element matrices).

Displacement interpolation matrix
for surfaces with externally applied
tractions (derivation of element
matrices).

The invariants of the Cauchy-Green
deformation tensor (analysis of rub
berlike materials).

The Jacobian matrix relating the Xi

coordinates to the isoparametric coor
dinates (two- and three-dimensional
solid elements).

The Jacobian matrix relating the I Xi

coordinates to the isoparametric coor
dinates (two- and three-dimensional
solid elements in geometrically
nonlinear analysis).

Shear factor (beam and shell
analysis).

The tangent stiffness matrix, includ
ing all geometric and material
nonlinearities.

The tangent stiffness matrix, includ
ing all geometric and material non
linearities (T.L. formulation).

The tangent stiffness matrix, includ
ing all geometric and material non
linearities (V.L. formulation).

The contribution to the total tangent
stiffness matrix arising from the lin
ear part of the Green-Lagrange
strain tensor.

ri!:SL - T.L. formulation

l!:SL - V.L. formulation

The contribution to the total tangent
stiffness matrix arising from the
nonlinear part of the Green
Lagrange strain tensor.

d!:SNL - T.L. formulation

l!:SNL - V.L. formulation

Effective stiffness matrix, including
inertia effects but no nonlinear
effects (dynamic substructure
analysis).

IK

t A

!:SC

l!:Snonlinear

mii

M

t
PiJ-

r , s , t

B

IR

Glossary G-3

Effective stiffness matrix, including
inertia effects and nonlinear effects
(dynamic substructure analysis).

IS after static condensation (dynamic
substructure analysis).

tIS after static condensation
(dynamic substructure analysis).

Nonlinear stiffness effects due to
geometric and material nonlinearities
(dynamic substructure analysis).

Length, evaluated at time t.

Element length, chosen using the
relation Le=c~t (dynamic analysis).

Wave length of a stress wave
(dynamic analysis).

Lumped mass associated with degree
of freedom i (dynamic analysis).

The mass matrix (dynamic analysis).

Quantities used in elasto-plastic
analysis, defined as

tPiJ- = _ ~IFpl
aeiJ- 'ail" fixed

Quantities used in elasto-plastic
analysis defined as

tqi} = ~:I
'T 'e~ fixed

Isoparametric coordinates (two- and
three-dimensional solid elements,
shell elements).

Rotation matrix (polar decomposi
tion of dQ ).

Reference load vector (automatic
load step incrementation).

Applied loads vector, corresponding
to time t.
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RNORM,

RMNORM

RTOL

IS

t, t+.1t

T

Teo

Virtual work associated with the
applied loads, evaluated at time t.

Reference load used with force tol
erance RTOL (solution of nonlinear
equations).

Reference moment used when rota
tional degrees of freedom are present.

Convergence tolerance used to mea
sure convergence of the out-of-bal
ance loads (solution of nonlinear
equations).

Deviatoric stress evaluated at time t
(elasto-plastic analysis).

Surface area, evaluated at time t.

Components of 2nd Piola-Kirchhoff
stress tensor, evaluated at time t and
referred to the original configuration
(basic Lagrangian continuum
mechanics).

Components of increments in the 2nd
Piola-Kirchhoff stress tensors:

S Hll.tS tsOij.= 0Vo-oVo

Matrix containing the components of
the 2nd Piola-Kirchhoff stress tensor
(T.L. formulation).

Vector containing the components of
the 2nd Piola-Kirchhoff stress tensor
(T.L. formulation).

Times for which a solution is to be
obtained in incremental or dynamic
analysis. The solution is presumed
known at time t and is to be deter
mined for time t +.1t.

"Effective" time (creep analysis).

Displacement transformation matrix
(truss element).

Cut-off period (the smallest period to
be accurately integrated in dynamic
analysis).

OUit

U~

~(i)

Smallest period in finite element
assemblage (dynamic analysis).

Total displacement of a point in the
ith direction.

Total acceleration of a point in the ith
direction (dynamic analysis).

Incremental displacement of a point
in the ith direction.

Components of displacement of a point
upon which a traction is applied.

Derivatives of the total displace
ments with respect to the original
coordinates (T.L. formulation).

Derivatives of the incremental dis
placements with respect to the orig
inal coordinates (T.L. formulation).

Derivatives of the incremental dis
placements with respect to the cur
rent coordinates (U.L. formulation).

Incremental displacement of nodal
point k in the ith direction.

Thtal displacement of nodal point k in
the ith direction at time t.

A vector containing incremental
nodal point displacements.

A vector containing total nodal point
displacements at time t.

Vector of nodal point accelerations,
evaluated at time t.

Vector of nodal point velocities,
evaluated at time t.

Vector of nodal point displacements,
evaluated at time t.

Stretch matrix (polar decomposition
of J.Q ).

Column vector used in the BFGS
method (solution of nonlinear
equations).



'!'!o'(i)

w

Jw

Volume evaluated at time t.

Director vector at node k evaluated at
time t (shell analysis).

Increment in the director vector at
node k (shell analysis).

Vectors constructed so that
lyk lyk lyk
_1 ,.Y.2 and _" are mutually

perpendicular (shell analysis).

Director vectors in the sand t
directions at node k, evaluated at
time t (beam analysis).

Increments in the director vectors in
the sand t directions at node k (beam
analysis).

Vector used in the BFGS method (solu
tion of nonlinear equations).

Preselected increment in external
work (automatic load step in
crementation).

Strain energy density per unit origi
nal volume, evaluated at time t
(analysis of rubberlike materials).

Plastic work per unit volume (elasto
plastic analysis).

Coordinate of a material particle in
the ith direction at time t.

Coordinate of node k in the ith direc
tion at time t.

Components of the deformation grad
ient tensor, evaluated at time t and
referred to the configuration at time O.

Components of the inverse deforma
tion gradient tensor.

Glossary G·5



Glossary of Greek Symbols

Parameter used in the a-method of
time integration.

a O· Euler forward method
a 112 - Trapezoidal rule
a 1 - Euler backward method

Incremental nodal point rotation for
node k about the tv~ vector (shell
analysis). -

at
au

Glossary G-7

A square coefficient matrix with
entries

[at] at;
au .. = aU

- ~ I

(solution of nonlinear equations).

When used before a symbol, this
denotes "variation in."

la Coefficient of thermal expansion
(thermo-elasto-plastic and creep
analysis).

Kronecker delta;
_ [0;

bl} - (1;
i r' }
i=}

Line search parameter (used in the
solution of nonlinear equations).

Section rotation of a beam element.

Incremental nodal point rotation for
node k about the tv~ vector (shell
analysis). -

Transverse shear strain in a beam
element.

Fluidity parameter used in visco
plastic analysis.

Related to the buckling load factor
X. through the relationship

X. - 1'Y =--
X.

Proportionality coefficient between
the creep strain rates and the total
deviatoric stresses (creep analysis).

Force vector in the BFGS method.

At

Ater

Displacement vector in the BFGS
method.

"Length" used in the constant arc
length constraint~equation (automatic
load step incrementation).

Time step used in incremental or
dynamic analysis.

Critical time step (dynamic anal
ysis).

Increment in the nodal point dis
placements during equilibrium iter
ations
Al,l(i) = l+6.I U(i) _ l+6.IU(i-1)

Vector giving the direction used for
line searches (solution of nonlinear
equations).

Intermediate displacement vectors
used during automatic load step
incrementation.
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10

Ix.

Increment in the modal displacements
(mode superposition analysis).

A time step corresponding to a sub
division of the time step ~t (plastic
analysis).

Components of Green-Lagrange strain
tensor, evaluated at time t and re
ferred to time O.

Components of increment in the Green
Lagrange strain tensor:

_ t+.11 _ I
oEij- - OEij. OEij.

Components of Almansi strain tensor.

Convected coordinate system (used
in beam analysis).

The "nonlinear" part of the incre
ment in the Green-Lagrange strain
tensor.

Nodal point rotation for node k (two
dimensional beam analysis).

Nodal point rotation for node k
about the X; axis (beam analysis).

Temperature at time t (thermo
elasto-plastic and creep analysis).

yariable in plastic analysis.

Lame constant (elastic analysis).

X. Ev
= (1 + v)(1 - 2v)

Scaling factor used to scale the stiff
ness matrix and load vector in lin
earized buckling analysis.

Load factor used to obtain the cur
rent loads from the reference load
vector: IS = Ix.B

v

Vab

n

Ip

I CT

I
CTy

CTy

~
m

T

Proportionality coefficient in calcula
tion of the plastic strain increments
(plastic analysis).

Lame constant (elastic analysis).

E
jJ. = 2(1 + v)

Poisson's ratio.

Poisson's ratio referred to the local
coordinate system a-b (orthotropic
analysis).

Total potential energy (fracture
mechanics analysis).

Mass density, evaluated at time t.

Components of stress tensor evaluated
at time t in M.N.o. analysis.

Effective stress (used in creep
analysis)r---....,
1- 3 I I
CT = 2" Sij- Sij-

Yield stress at time t (plastic
analysis).

Initial yield stress (plastic analysis).

Denotes "sum over all elements."

Vector containing the components of
the stress tensor in M.N.O. analysis.

(as a left superseript)-Denotes a time.

Examples

TIS, TB - linearized bucklir:tg analysis
TK - solution of nonlinear equations

Components of Cauchy stress tensor,
evaluated at time t.

(automatic load
mentation).

step incre- Matrix containing the components of
the Cauchy stress tensor (D.L.
formulation).



Wi

(
(m)

W n )max

Vector containing the components of
the Cauchy stress tensor (V.L.
formulation).

A vector containing the nodal point
displacements corresponding to a
buckling mode shape.

A vector containing the nodal point
displacements corresponding to the
ith mode shape.

Natural frequency of the ith mode
shape.

Largest natural frequency of element
m.

Largest natural frequency of all
individual elements.

Glossary G-9
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