Use of Elastic Constitutive Relations in Total Lagrangian Formulation

Contents:

Basic considerations in modeling material response
Linear and nonlinear elasticity
Isotropic and orthotropic materials
One-dimensional example, large strain conditions
The case of large displacement/small strain analysis,
discussion of effectiveness using the total Lagrangian
formulation
Hyperelastic material model (Mooney-Rivlin) for analysis
of rubber-type materials
Example analysis: Solution of a rubber tensile test
specimen
Example analysis: Solution of a rubber sheet with a hole

Textbook:

Reference:
6.4, 6.4.1

The solution of the rubber sheet with a hole is given in
Bathe, K. J., E. Ramm, and E. L. Wilson, "Finite Element Formulations for Large Deformation Dynamic Analysis," International Journal for Numerical Methods in Engineering, 9, 353-386, 1975.

USE OF CONSTITUTIVE RELATIONS

Transparency

- We developed quite general kinematic relations and finite element discretizations, applicable to small or large deformations.
- To use these finite element formulations, appropriate constitutive relations must be employed.
- Schematically

$$
\underline{K}=\int_{V} \underline{B}_{\text {constitutive relations enser }}^{\underline{C}} \underline{B} d V, \quad \underline{V}=\int_{V} \underline{B}^{\top} \underset{T}{\tau} d V
$$

For analysis, it is convenient to use the classifications regarding the magnitude of deformations introduced earlier:
or deformaions introduced earlier:

- Infinitesimally small displacements
- Large displacements / large rotations, but small strains
- Large displacements / large rotations, and large strains

The applicability of material descriptions generally falls also into these categories.

Transparency 15-3

Recall:

- Materially-nonlinear-only (M.N.O.) analysis assumes (models only) infinitesimally small displacements.
- The total Lagrangian (T.L.) and updated Lagrangian (U.L.) formulations can be employed for analysis of infinitesimally small displacements, of large displacements and of large strains (considering the analysis of 2-D and 3-D solids).
\rightarrow All kinematic nonlinearities are fully included.

We may use various material descriptions:

Transparency

15-4

Material Model	Examples
Elastic	Almost all materials, for small enough stresses
Hyperelastic	Rubber
Hypoelastic	Concrete
Elastic-plastic	Metals, soils, rocks under high stresses
Creep	Metals at high temperatures
Viscoplastic	Polymers, metals

ELASTIC MATERIAL BEHAVIOR:

In linear, infinitesimal displacement, small strain analysis, we are used to employing

Transparency

For 1-D nonlinear analysis we can use

Transparency
15-6

We can generalize the elastic material behavior using:

$$
\begin{gathered}
{ }_{o}^{\mathrm{t}} S_{i j}={ }_{o}^{\mathrm{t}} \mathrm{C}_{\mathrm{ijs}{ }_{0}^{\mathrm{t}} \varepsilon_{\mathrm{rs}}} \\
\mathrm{~d}_{0} S_{i j}={ }_{o} C_{i j r s} \mathrm{~d}_{0} \varepsilon_{\mathrm{rs}}
\end{gathered}
$$

This material description is frequently employed with

- the usual constant material moduli used in infinitesimal displacement analysis
- rubber-type materials

Use of constant material moduli, for an isotropic material:
${ }_{0}^{\mathrm{t}} \mathrm{C}_{i j \mathrm{rs}}={ }_{o} \mathrm{C}_{i j \mathrm{~s}}=\lambda \delta_{i j} \delta_{\mathrm{rs}}+\mu\left(\delta_{\mathrm{ir}} \delta_{j s}+\delta_{i s} \delta_{j r}\right)$
Lamé constants:

$$
\lambda=\frac{E v}{(1+\nu)(1-2 v)}, \mu=\frac{E}{2(1+\nu)}
$$

Kronecker delta:

$$
\delta_{i j}= \begin{cases}0 ; & i \neq j \\ 1 ; & i=j\end{cases}
$$

Examples:

2-D plane stress analysis:

$$
o \underline{\mathrm{C}}=\frac{\mathrm{E}}{1-v^{2}}\left[\begin{array}{cc|c}
1 & v & 0 \\
v & 1 & 0 \\
\hline 0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

2-D axisymmetric analysis:

$$
\underline{C}=\frac{E(1-v)}{(1+v)(1-2 v)}\left[\begin{array}{cccc}
1 & \frac{v}{1-v} & 0 & \frac{v}{1-v} \\
\frac{v}{1-v} & 1 & 0 & \frac{v}{1-v} \\
0 & 0 & \frac{1-2 v}{2(1-v)} & 0 \\
\frac{v}{1-v} & \frac{v}{1-v} & 0 & 1
\end{array}\right]
$$

Transparency
15-11

For an orthotropic material, we also use the usual constant material moduli: Example: 2-D plane stress analysis

15-12

Sample analysis: One-dimensional problem:

Material constants E, v

Constitutive relation: ${ }_{0}^{\mathrm{t}} \mathrm{S}_{11}=\tilde{E}{ }_{0}^{\mathrm{t}} \varepsilon_{11}$

Sample analysis: One-dimensional problem:

Material constants E, v

Constitutive relation: ${ }_{0}^{\mathrm{t}} \mathrm{S}_{11}=\tilde{E}{ }_{0}^{\mathrm{t}} \varepsilon_{11}$

Sample analysis: One-dimensional problem:

Constitutive relation: ${ }_{0}^{\mathrm{t}} \mathrm{S}_{11}=\tilde{E}{ }_{0}^{\mathrm{t}} \varepsilon_{11}$

Transparency 15-14

Transparency
15-15

We establish the force-displacement relationship:

$$
\begin{aligned}
& { }_{o}^{t} \varepsilon_{11}=\underbrace{{ }^{0} U_{1}}_{\frac{{ }_{0}^{t}-u_{1,1}}{{ }^{0} L}}+\frac{1}{2}\left({ }_{0}^{t} u_{1,1}\right)^{2} \\
& =\frac{1}{2}\left[\left(\frac{{ }^{t} L}{{ }^{0} L}\right)^{2}-1\right] \text {, } \\
& { }_{0}^{\mathrm{t}} \mathrm{~S}_{11}=\frac{{ }^{0}{ }_{\mathrm{t}}^{\rho}}{}{ }_{\mathrm{t}}^{0} \mathrm{x}_{1,1}{ }^{\mathrm{t}} \tau_{11}{ }_{\mathrm{t}}^{\mathrm{o}} \mathrm{x}_{1,1} \\
& =\frac{{ }^{t} L}{{ }^{0} L}\left(\frac{{ }^{0} L}{{ }^{t} L}\right) \frac{{ }^{t} P}{\bar{A}}\left(\frac{{ }^{0} L}{{ }^{t} L}\right)=\frac{{ }^{0} L}{{ }^{t} L} \frac{{ }^{t} P}{\bar{A}}
\end{aligned}
$$

Transparency 15-16

Using ${ }^{t} L={ }^{0} L+{ }^{t} \Delta, \quad{ }_{o}^{t} S_{11}=E^{E}{ }_{o} \varepsilon_{11}$, we find

This is not a realistic material description for large strains.

- The usual isotropic and orthotropic material relationships (constant E, v, E_{a}, etc.) are mostly employed in large displacement/large rotation, but small strain analysis.
- Recall that the components of the 2nd Piola-Kirchhoff stress tensor and of the Green-Lagrange strain tensor are invariant under a rigid body motion (rotation) of the material.
- Hence only the actual straining increases the components of the Green-Lagrange strain tensor and, through the material relationship, the components of the 2nd PiolaKirchhoff stress tensor.
- The effect of rotating the material is included in the T.L. formulation,
includes invariant under a rotation rigid body rotation

Transparency
15-18

Transparency
15-19

Transparency 15-20

Pictorially:

Deformation to state 1 Rigid rotation from (small strain situation) state 1 to state 2

For small strains,
${ }_{o}^{1} \varepsilon_{11},{ }_{0}^{1} \varepsilon_{22},{ }_{0}^{1} \varepsilon_{12}={ }_{0}^{1} \varepsilon_{21} \ll 1$,
${ }_{0}^{1} S_{i j}={ }_{0}^{1} C_{i j r s}{ }_{0}^{1} \varepsilon_{r s}$,
a function of E, v
${ }_{0}^{1} S_{i j} \doteq{ }^{1} \tau_{i j}$
Also, since state 2 is reached by a rigid body rotation,

$$
{ }_{0}^{2} \varepsilon_{i j}={ }_{0}^{1} \varepsilon_{i j},{ }_{0}^{2} S_{i j}={ }_{0}^{1} S_{i j},
$$

$$
{ }^{2} \underline{\boldsymbol{T}}=\underline{\mathrm{R}}^{1} \boldsymbol{T} \underline{\mathrm{R}}^{\top}
$$

rotation matrix

Applications:

Transparency 15-21

- Large displacement / large rotation but small strain analysis of beams, plates and shells. These can frequently be modeled using 2-D or 3-D elements. Actual beam and shell elements will be discussed later.
- Linearized buckling analysis of structures.

Frame analysis:

Axisymmetric shell:

Transparency 15-22

Rubber is assumed to be an isotropic material, hence

$$
{ }^{\mathrm{t}} \mathrm{~W}=\text { function of }\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)
$$

where the I's are the invariants of the Cauchy-Green deformation tensor (with components ${ }^{\mathrm{t}} \mathrm{C}_{\mathrm{ij}}$):

$$
\begin{aligned}
& \mathrm{I}_{1}={ }_{o}^{\mathrm{t}} \mathrm{C}_{\mathrm{ii}} \\
& \mathrm{I}_{2}=\frac{1}{2}\left(\mathrm{I}_{1}^{2}-{ }_{o}^{\mathrm{t}} \mathrm{C}_{i j}{ }_{0}^{\mathrm{t}} \mathrm{C}_{i j}\right) \\
& \mathrm{I}_{3}=\operatorname{det}\left({ }_{0}^{\mathrm{t}} \underline{\mathrm{C}}\right)
\end{aligned}
$$

Transparency
15-25

Transparency 15-26
with

$$
\mathrm{I}_{3}=1 \simeq \text { incompressibility constraint }
$$

Note, in general, the displacementbased finite element formulations presented above should be extended to include the incompressibility constraint effectively. A special case, however, is the analysis of plane stress problems.

Transparency 15-27

Special case of Mooney-Rivlin law: plane stress analysis

For this (two-dimensional) problem,

$$
{ }^{\mathrm{t}} \underline{\mathrm{C}} \underline{\mathrm{C}}=\left[\begin{array}{ccc}
{ }^{\mathrm{t}} \mathrm{C}_{11} & { }^{\mathrm{t}} \mathrm{C}_{12} & 0 \\
{ }^{\mathrm{t}} \mathrm{C}_{21} & { }^{\mathrm{t}} \mathrm{C}_{22} & 0 \\
0 & 0 & { }^{\mathrm{t}} \mathrm{C}_{33}
\end{array}\right]
$$

Since the rubber is assumed to be incompressible, we set $\operatorname{det}\left({ }_{0}{ }^{4} \underline{\mathrm{C}}\right.$) to 1 by choosing

$$
{ }_{0}^{\mathrm{t}} \mathrm{C}_{33}=\frac{1}{\left({ }_{0}^{\mathrm{t}} \mathrm{C}_{11}{ }^{\mathrm{t}} \mathrm{O}_{22}-{ }_{0}^{\mathrm{t}} \mathrm{C}_{12}{ }_{\left.{ }_{0}^{\mathrm{t}} \mathrm{C}_{21}\right)}\right.}
$$

We can now evaluate $\mathrm{I}_{1}, \mathrm{I}_{2}$:

$$
\begin{aligned}
& \mathrm{I}_{1}={ }_{0}^{\mathrm{t}} \mathrm{C}_{11}+{ }_{{ }_{0}^{\mathrm{t}} \mathrm{C}_{22}}+\frac{1}{\left({ }_{0}^{\mathrm{t}} \mathrm{C}_{11}{ }^{\mathrm{t}} \mathrm{C}_{22}-{ }_{0}^{\mathrm{t}} \mathrm{C}_{12}{ }_{{ }_{0}^{t}} \mathrm{C}_{21}\right)} \\
& \mathrm{I}_{2}={ }_{0}^{\mathrm{t}} \mathrm{C}_{11}{ }_{{ }^{\mathrm{t}}{ }^{\mathrm{C}} \mathrm{C}_{22}+\frac{{ }_{0}^{\mathrm{t}} \mathrm{C}_{11}+{ }_{0}^{\mathrm{t}} \mathrm{C}_{22}}{\left({ }_{0}^{\mathrm{t}} \mathrm{C}_{11}{ }^{\mathrm{t}} \mathrm{C}_{22}-{ }_{0}^{\mathrm{t}} \mathrm{C}_{12}{ }_{{ }^{\mathrm{t}}} \mathrm{C}_{21}\right)}}^{\text {(}} \\
& -\frac{1}{2}\left({ }_{0}^{\mathrm{t}} \mathrm{C}_{12}\right)^{2}-\frac{1}{2}\left({ }_{0}^{\mathrm{t}} \mathrm{C}_{21}\right)^{2}
\end{aligned}
$$

The 2nd Piola-Kirchhoff stresses are

$$
\begin{aligned}
{ }_{0}^{t} S_{i j} & =\frac{\partial_{0}^{t} W}{\partial{ }_{0}^{t} \varepsilon_{i j}}=2 \frac{\partial_{0}^{t} W}{\partial{ }_{0}^{t} C_{i j}} \quad\binom{\text { remember }}{{ }_{0}^{{ }_{0}} C_{i j}=2} \\
& =2 \frac{\partial}{{ }_{0}^{t} \varepsilon_{i j}+\delta_{i j}} C_{i j}\left[C_{1}\left(I_{1}-3\right)+C_{2}\left(I_{2}-3\right)\right] \\
& =2 C_{1} \frac{\partial I_{1}}{\partial_{0}^{t} C_{i j}}+2 C_{2} \frac{\partial I_{2}}{\partial_{0}^{t} C_{i j}}
\end{aligned}
$$

Transparency 15-31 gives

$$
\begin{aligned}
& +2 \mathrm{C}_{2}\left\{{ }^{\mathrm{t}} \mathrm{C}_{33}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\left[1-\left({ }_{0}^{\mathrm{t}} \mathrm{C}_{33}\right)^{2}\left({ }_{0}^{\mathrm{o}} \mathrm{C}_{11}+{ }_{0}^{\mathrm{t}} \mathrm{C}_{22}\right)\right]\left[\begin{array}{c}
{ }^{\mathrm{t}} \mathrm{C}_{22} \\
{ }_{0}^{\mathrm{t}} \mathrm{C}_{11} \\
-{ }_{0}^{\mathrm{t}} \mathrm{C}_{12}
\end{array}\right]\right\}
\end{aligned}
$$

This is the stress-strain relationship.

Transparency 15-32

We can also evaluate the tangent constitutive tensor o $\mathrm{C}_{\text {ijrs }}$ using

$$
\begin{aligned}
{ }_{0} C_{i j r s} & =\frac{\partial^{2}{ }_{0}^{\mathrm{t}} \mathrm{~W}}{\partial{ }_{0}^{\mathrm{t}} \varepsilon_{i j} \partial_{0}^{\mathrm{t}} \mathrm{E}_{\text {rs }}} \\
& =4 \mathrm{C}_{1} \frac{\partial^{2} \mathrm{I}_{1}}{\partial_{0}^{\mathrm{t}} \mathrm{C}_{i j} \partial_{0}^{t} \mathrm{C}_{\mathrm{rs}}}+4 \mathrm{C}_{2} \frac{\partial^{2} \mathrm{I}_{2}}{\partial_{0}^{\mathrm{t}} \mathrm{C}_{i j} \partial_{0}^{\mathrm{t}} \mathrm{C}_{\mathrm{rs}}}
\end{aligned}
$$

etc.
For the Mooney-Rivlin law

Example: Analysis of a tensile test specimen:
 Mooney-Rivlin constants:
 $\mathrm{C}_{1}=.234 \mathrm{~N} / \mathrm{mm}^{2}$

All dimensions in millimeters

Finite element mesh: Fourteen 8-node elements

$$
\frac{\Delta}{2}, \frac{R}{2}
$$

Transparency 15-33

Transparency 15-34

Transparency 15-36

Final deformed mesh (force $=4 \mathrm{~N}$):

Slide
15-1

Analysis of rubber sheet with hole

Finite element mesh
Slide
15-2

Slide 15-3

Static load-deflection curve for rubber sheet with hole

Slide 15-4

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures

Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

