
19
Discrete-Time
Sampling

In the previous lectures we discussed sampling of continuous-time signals. In
this lecture we address the parallel topic of discrete-time sampling, which has
a number of important applications. The basic concept of discrete-time sam-
pling is similar to that of continuous-time sampling. Specifically, we multiply
a discrete-time sequence by a periodic impulse train, thus retaining every Nth
sample and setting the remaining ones to zero (where N denotes the period of
the sampling impulse train). The consequences in the frequency domain and
the constraints on the bandwidth of the original sequence such that it can
be recovered from its samples parallel those for continuous time. Under the
constraints of the sampling theorem, exact interpolation can again be imple-
mented with an ideal lowpass filter.

Closely associated with, but not identical to, the concept of discrete-time
sampling is that of decimation or downsampling. After sampling a sequence
with an impulse train, we have obtained a new sequence that is nonzero only
at multiples of the sampling period N. Consequently, in many practical situa-
tions there is no reason to explicitly retain these zero values since they can
always be reinserted. Thus, somewhat distinct from the notion of sampling is
the concept of decimation, whereby a new sequence is generated from the
original sequence by selecting every Nth sample. This in effect results in a
time compression. Although not typically implemented this way, it can be
thought of as a two-step process, the first step consisting of periodic sampling
and the second step corresponding to discarding the zero values between the
samples. Decimation is also commonly referred to as downsampling since if
the original sequence resulted from time sampling a continuous-time signal,
the new sequence resulting from decimation would be exactly what would
have been obtained had a lower sampling rate been used originally. If, for ex-
ample, a continuous-time signal is sampled at or near the Nyquist rate and is
then processed by a discrete-time system that provides some further band-
limiting, downsampling or decimation is often used.

The reverse of downsampling is "upsampling," whereby we attempt to
reconstruct the original sequence. The process is again best thought of in two
stages, the first corresponding to converting the decimated sequence to a
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sampled sequence by reinserting the (N- 1) zero values between the sample
points. The second stage is interpolation with a lowpass filter to construct the
original sequence.

The processes of downsampling and upsampling have a number of prac-
tical implications. One, as indicated above, is sampling rate conversion after
additional processing. Another very important one is converting a sequence
from one sampling rate to another perhaps to generate compatibility between
otherwise incompatible systems. For example, it is often important to convert
between different digital audio systems that use different sampling rates.

In this lecture we also briefly discuss the concept of sampling in the fre-
quency domain. Frequency-domain sampling typically arises when we would
like to measure or explicitly evaluate numerically the Fourier transform. Al-
though in general the Fourier transform for both continuous time and discrete
time is a function of a continuous-frequency variable, the measurement or
calculation must be made only at a set of sample frequencies. Because of the
duality between the time and frequency domains for continuous time, the is-
sues, analysis, and concepts related to frequency-domain sampling for con-
tinuous-time signals are exactly dual to those of time-domain sampling. Thus,
for example, the Fourier transform can exactly be recovered from equally
spaced samples in the frequency domain provided that the time-domain signal
is timelimited (the dual of bandlimited). Basically, the same result applies in
discrete time, i.e., the Fourier transform of a timelimited sequence can be ex-
actly represented by and recovered from equally spaced samples provided
that the sample spacing in frequency is sufficiently small in relation to the
time duration of the signal in the time domain.

Suggested Reading
Section 8.6, Sampling of Discrete-Time Signals, pages 543-548

Section 8.7, Discrete-Time Decimation and Interpolation, pages 548-553

Section 8.5, Sampling in the Frequency Domain, pages 540-543
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Discrete-time
sampling with a
periodic impulse train.
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Illustration of spectra
associated with
discrete-time
sampling. The
sampling rate is
sufficiently high to
avoid aliasing.
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27T Q Illustration of spectra
associated with
discrete-time sampling
when the sampling
rate is too low to avoid
aliasing.
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Illustration of the
recovery of the
original discrete-time
spectrum from the
spectrum of the
sampled signal using
an ideal lowpass filter.
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Overall system for
discrete-time sampling
and reconstruction.
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Discrete-time
sampling and
reconstruction with
the reconstruction
interpreted in the time
domain as a process of
interpolation.
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Relationship between
sampling and
decimation.
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Illustration of the
effect of decimation in
the frequency domain.
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Example of a context
in which discrete-
time decimation or
downsampling might
be used.
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Steps involved in
upsampling, i.e.,
recovering a signal
after it has been
decimated.
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Time-domain
illustration of
upsampling.
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Frequency-domain
illustration of
upsampling.
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Frequency-domain
sampling.
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Signal recovery after
frequency-domain
sampling.

x(t) x(t)

x(t) x(t)



Signals and Systems

19-12

x[n]

TRANSPARENCY
19.15
Recovery of a
discrete-time signal
after frequency-
domain sampling.
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