COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 1

Solutions 18.1

The flow-graph of Fig. 9.3 of the text is based on the decomposition of X(k) in the form of equation 9.14 of text. For N = 16, the corresponding flow-graph expressing X(k) as a combination of two eight-point DFT's is shown in Figure S18.1-1 below.

Figure S18.1-1

Solution 18.2

From the expression for the inverse DFT it follows that N-1 . 2π

N
$$\mathbf{x}^{\star}(\mathbf{n}) = \sum_{k=0}^{N-1} \mathbf{x}^{\star}(k) e^{-j(\frac{2\pi}{N})kn}$$

Thus by using as the input to the DFT program the complex conjugate of X(k), the output sequence will be N times the complex conjugate of x(n).

Solution 18.3

(a) $\frac{N}{2}$

(b) In proceeding from array (m - 1) to array m we are combining $2^{(m-1)}$ point DFT's to form 2^m point DFT's. Thus the coefficient are successive powers of W_M where $M = 2^m$. Thus these coefficients are W_M^k where $k = 0, 1, 2, \dots, (\frac{M}{2} - 1)$ or, since

$$W_{M} = (W_{N})^{N/M}$$

The powers of $W_{\rm N}$ involved in computing the mth array from the (m - 1)st array are

$$W_N^{Nk/M}$$
 k = 0,1,2,...(M/2 - 1)

(c) $2^{(m-1)}$

(d) 2^m for $1 \le m \le (\log_2 N) - 1$. For the last array $(m = \log_2 N)$ there are no two butterflies utilizing the same coefficients.

With $g(n) = x_1(n) + j x_2(n)$, $G(k) = X_1(k) + j X_2(k)$ With $X_1(k)$ and $X_2(k)$ expressed in terms of their real and imaginary parts, $x_1(k) = x_{1R}(k) + j x_{1I}(k)$ $x_2(k) = x_{2R}(k) + j x_{2I}(k)$ G(k) can be written as $G(k) = [X_{1R}(k) - X_{2I}(k)] + j [X_{2R}(k) + X_{1I}(k)]$ Now, since $x_1(n)$ and $x_2(n)$ are real, $X_{1R}(k)$ and $X_{2R}(k)$ are even and $x_{1I}(k)$ and $X_{2I}(k)$ are odd. Thus, $G_{ER}(k) = X_{1R}(k)$ $G_{OR}(k) = -X_{2I}(k)$ $G_{EI}(k) = X_{2R}(k)$ $G_{OI}(k) = X_{1I}(k)$ Resource: Digital Signal Processing Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.