COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 1

Solutions 18.1
The flow-graph of Fig. 9.3 of the text is based on the decomposition of $X(k)$ in the form of equation 9.14 of text. For $N=16$, the corresponding flow-graph expressing $X(k)$ as a combination of two eight-point DFT's is shown in Figure Sl8.l-l below.

Figure Sl8.1-1

Solution 18.2

From the expression for the inverse DFT it follows that

$$
N x^{*}(n)=\sum_{k=0}^{N-1} X^{*}(k) e^{-j\left(\frac{2 \pi}{N}\right) k n}
$$

Thus by using as the input to the DFT program the complex conjugate of $X(k)$, the output sequence will be N times the complex conjugate of $x(n)$.

Solution 18.3
(a) $\frac{\mathrm{N}}{2}$
(b) In proceeding from array (m - l) to array m we are combining $2^{(m-1)}$ point DFT's to form 2^{m} point DFT's. Thus the coefficient are successive powers of W_{M} where $M=2^{m}$. Thus these coefficients are $W_{M}^{k} \quad$ where $k=0,1,2, \ldots\left(\frac{M}{2}-1\right)$ or, since
$W_{M}=\left(W_{N}\right)^{N / M}$
The powers of W_{N} involved in computing the m th array from the ($m-1$)st array are
$\mathrm{W}_{\mathrm{N}}^{\mathrm{Nk} / \mathrm{M}} \quad \mathrm{k}=0,1,2, \ldots(\mathrm{M} / 2-1)$
(c) $2^{(m-1)}$
(d) 2^{m} for $1 \leq m \leq\left(\log _{2} N\right)-1$. For the last array $\left(m=\log _{2} N\right)$ there are no two butterflies utilizing the same coefficients.

Solution 18.4
With $g(n)=x_{1}(n)+j x_{2}(n)$,
$G(k)=X_{1}(k)+j X_{2}(k)$
With $X_{1}(k)$ and $X_{2}(k)$ expressed in terms of their real and imaginary parts,
$X_{1}(k)=X_{1 R}(k)+j X_{1 I}(k)$
$X_{2}(k)=X_{2 R}(k)+j X_{2 I}(k)$

G(k) can be written as
$G(k)=\left[X_{1 R}(k)-X_{2 I}(k)\right]+j\left[X_{2 R}(k)+X_{1 I}(k)\right]$

S18. 2

Now, since $X_{1}(n)$ and $X_{2}(n)$ are real, $X_{1 R}(k)$ and $X_{2 R}(k)$ are even and $X_{1 I}(k)$ and $X_{2 I}(k)$ are odd. Thus,
$G_{E R}(k)=X_{1 R}(k)$
$G_{O R}(k)=-X_{2 I}(k)$
$G_{E I}(k)=X_{2 R}(k)$
$G_{O I}(k)=X_{1 I}(k)$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

