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ALAN

OPPENHEIM:

Throughout these lectures, we have been considering the analysis and the implementation of

discrete time linear shift invariant systems, or what we've been referring to as digital filters. In

this lecture, I would like to begin the discussion of the design of digital filters. Now the rationale

for digital filters is exactly the same as it is for analog filters. In particular, we have taken

advantage several times of the important property of linear shift in variance systems that

complex exponentials are eigenfunctions of this class of systems. In other words, then with a

complex exponential input, the output is a complex exponential of the same complex

frequency multiplied by the system function H v to the j omega. Or equivalently, with a

sinusoidal input, the output is likewise sinusoidal with the same frequency but with a change in

amplitude and with a change in phase.

Now what this property of linear shift invariant systems permits us to consider is the separation

of signals that have been added when these signals occupy different frequency bands.

Specifically, we can consider a signal composed of the sum of two signals, one of which we

want, the other of which we don't want, or we would like to suppress. And if those two signals

are in different frequency bands-- in other words, their spectra occupy different segments of

the frequency axis, then we can choose the system function for the linear shift invariant

system so that it is unity in the band of frequencies that we want to keep and at 0 in the band

of frequencies that we want to reject. That of course, is exactly the same notion as we have in

continuous time or analog systems or filters.

So for example, if we had a signal, which was the sum of two components, one of which was

low frequency, and that we wanted to keep, and the other of which was high frequency and

that we wanted to suppress, then we can consider extracting the wanted signal with a system

whose frequency response ideally is unity at the low frequency end and at zero at the high

frequency end, or after some cutoff frequency, which I've denoted by omega sub P.



So this then is one type of filter and one class of filtering problems, generally, what we would

refer to as frequency selective filters. We've illustrated that here with the example of a low-

pass filter. But of course there are other kinds of frequency selective filters-- for example, high-

pass, band-pass, band-stop, multiple band filters, et cetera. Furthermore, the filtering problem,

both digital and analog, is of course, not restricted to just simply frequency selective filters. We

can think of problems-- we can talk about a wide variety of problems, in fact-- where the

frequency characteristics that are desired are not piecewise constant as they are in the

frequency selective filter case, but might be non-piecewise constant such as, for example, with

the case of a differentiator, in which case the desired frequency characteristic is in fact, linear

with frequency, or in the inverse filtering problem where the desired frequency characteristic is

in general of a somewhat arbitrary shape. And so in this more general sense, the filtering

problem can be thought of in terms of the implementation of a linear shift invariant system with

a specified frequency response characteristic that we wish to achieve.

To carry out the discussion, all the discussion that will be carrying out today and in fact

throughout most of these lectures on digital filter design, I'll relate primarily to frequency

selective filters and in fact, to low-pass filters, although it's important to keep in mind that the

digital filter problem, the digital filter design problem, is not restricted to just that class of filters.

Well, for the case of an ideal low-pass filter, or a low-pass filter, this is the desired frequency

characteristic. And so what's the problem? Well, we have seen in the last several lectures that

for the implementation of digital filters, it's particularly convenient to have a filter or a system

whose system function is representable as a rational function of z, or equivalently whose input-

output characteristic can be related by means of a linear constant coefficient difference

equation.

A linear constant coefficient difference equation, or a rational system function, can't achieve

exactly an ideal low-pass filter characteristic as we have here, and in general can't achieve

any ideal frequency selective characteristic where the transition from one band to another is

as abrupt as we would like it to be ideally. So in fact, what's required is to approximate this

ideal frequency characteristic, and the approximation of the ideal frequency characteristic, and

the design of a rational transfer function to implement that approximation is what the digital

filter design problem is about.

So whereas we talk ideally about a filter characteristic, as I've indicated here, in fact, we have

to allow some deviation from this ideal characteristic so that we would permit as an example a



frequency response, rather than being unity in the passband, to deviate from unity by some

amount. And let's designate that by say, delta sub P, denoting a passband deviation. So that in

fact where we might specify is a filter which in the passband, in the band of frequencies that

we wish to pass, rather than being exactly unity, is constrained in the interval between unity

and 1 minus delta sub P.

Similarly, we might permit the frequency characteristics, rather than requiring them to be

exactly 0 in a stopband region. We might permit the frequency characteristic to deviate from 0

by some amount which we can denote as delta sub S, which is the stopband deviation, in

which case we would ask that the filter fall between 0 and delta sub S, that is that the filter that

we actually design be restricted to this frequency range. And finally recognizing that in reality

we can't achieve a discontinuity in the frequency response as sharp as I've indicated here, we

would permit also a transition region. That is, we would permit a region, after which the

frequency characteristic must be below delta sub S, and before which the frequency

characteristic must be between 1 and 1 minus delta sub P, but allowing a region for it to make

the transition from the passband to the stopband.

So these are the kinds of specifications on a filter. And a typical kind of characteristic then that

might result is a filter perhaps that ripples between these limits 1 and 1 minus delta sub P in

the passband, and then makes the transition into a stopband region and perhaps wiggles

around in the stopband region, sometimes perhaps touching the limits and sometimes not.

So what the digital filter design problem is then, is given a set of specifications on the filter,

recognizing that we can implement an ideal filter, but in fact allowing some deviation from the

ideal filter. The digital filter design problem is then to design a rational transfer function, which

approximates in some sense, this ideal filter maintaining the specifications of passband and

stopband deviation that we've imposed on the problem.

Now, there are several classes of design techniques that we can consider. The first class of

design techniques, which in fact, we won't be talking much about, is the class that I've referred

to as analytical design techniques. Basically what I mean by that are design techniques that

permit the approximation of the ideal frequency characteristic.

The approximation is carried out through an analytical procedure and results in a closed form

transfer function. That in fact is a very common class of techniques for continuous time or

analog filter design. And that leads us to the second class of design techniques, namely the



class of design techniques that I refer to as mapping continuous time to discrete time.

Well, why in the world would we ever want a map from continuous time to discrete time? Well,

the reason, very simply, is that a lot of work. And a lot of results have developed for the design

of continuous time filters. And in fact, a lot of these procedures are analytical procedures.

They lead to analytical, or they lead to closed form designs and their analytical procedures

that can be used. Now, if it's possible to map those designs to digital designs, then in fact,

that's something we should do simply to take advantage of the kinds of results that have been

worked out previously in the design of analog filters.

An important point to keep in mind, however, is that we don't mean by this approximating an

analog filter with a digital filter. That's not the objective, that's a point that we've stressed

throughout these lectures. Our objective is not to approximate an analog filter with a digital

filter. But if in fact, we can utilize analog designs in designing digital filters, then that's

something we should do. And in fact, there are some procedures that allow us to do this that

are very successful.

The third class of design techniques are what are referred to as algorithmic or computer-aided

design techniques. And the basic idea here is that there are a variety of algorithmic

procedures, iterative procedures that we can go through to carry out the digital filter design.

And we'll see a brief discussion of a number of these in the next several lectures, both for

infinite impulse response filters and for finite impulse response filters.

Now, in fact on the issue of infinite impulse response and finite impulse response, it turns out

that it's convenient to separate the design issues for infinite impulse response and for finite

impulse response filters. There are techniques for the finite impulse response case that are

not applicable to the infinite impulse response case, and vice versa. And consequently, as we

talk about digital filter design techniques, we'll be talking first about the design of infinite

impulse response, or what we alternatively refer to as recursive digital filters, and then we'll

talk separately about some design procedures for finite impulse response or non-recursive

digital filters.

So for this lecture, and in fact for this lecture and the next lecture, and in fact for this and the

next two lectures, we'll be focusing entirely on the design of infinite impulse response digital

filters. And in the lecture following that, we'll consider some design procedures for finite

impulse response filters.



All right, well, the first class of procedures, design techniques that I'd like to discuss, are ones

related to mapping from continuous time to discrete time-- that is, taking analog filter design

techniques and utilizing them for the design of digital filters. So the procedure basically is that

we're mapping from continuous time to discrete time. We have a continuous time system

function, H sub a of S, which is the Laplace transform of the impulse response, H sub a of T,

the H standing for analog. And we'd like to map that to a digital filter transfer function, H of z,

or equivalently map the impulse response to a digital filter unit sample response, H of n. And

we'd like to do this, of course, in such a way that if this was a good filter in the analog domain,

then this will be a good filter in the digital domain.

Well, of course in designing digital filters by implementing and mapping of the type that we're

talking about, there are some obvious restrictions that we would like to impose, one of which is

that we would like the behavior of H sub a of S, the analog system function, on the j omega

axis to map to a corresponding behavior on the unit circle. The point, of course, is that an

analog system function or an analog filter, an analog frequency response, when we talk about

the frequency response, we're looking in the s-plane on the j omega axis. And for the digital

filter, it is the behavior of the system function on the unit circle that dictates what the frequency

response is like. If the analog filter has a good frequency response-- in other words, it has a

good behavior on the j omega axis-- that's what we would like to have mapped over to a good

behavior in the z-plane on the unit circle.

So this then is the first condition that we would like to impose. And a second condition that it's

reasonable to impose is that a stable analog system function mapped to a stable digital

system function. In other words, we'd like to be confident that our design procedure is such

that if we had a good analog filter and it was stable, that when we were all done, we would end

up with a good digital filter that was also stable. So these, then, are two of the conditions that

are basic to any design procedure that maps from continuous time to discrete time.

Well, there are a number of procedures that are available. One of the first that tends to come

to mind when you think of mapping a continuous time filter to a discrete time filter is to

approximate in some sense, let's say the differential equation for the analog filter, by simply

replacing the derivatives by differences. So the first method that I'd like to talk about is a

method which corresponds to going from the analog filter to the digital filter by mapping

differentials in the analog domain to differences in the digital domain. And let me tell you in

advance that what we'll see, in fact, is that although this is intuitively one of the first methods



that tends to come to mind, that in fact, it is not a particularly good method in terms of the

basic guidelines that we've set down.

But let's go through the method anyway. Here we have an analog system function, H sub a of

S. And the corresponding differential equation, the filter then is described in terms of a linear

combination of derivatives of the output equal to a linear combination of derivatives of the

input.

Now we want to convert this in some way to a difference equation. And so we can consider

replacing y sub a of t by y of n, y of n, of course is the output of the digital filter, in such a way

that the derivative, a first derivative sampled at t equal to n times T gets replaced by the first

difference of the output of the digital filter. Where the first difference I'm defining as the first

forward difference. That is, y of n plus 1 minus y of n divided by T. So the idea here is basically

to say, well look, I can generate a difference equation from this differential equation by

replacing the derivatives by differences-- in the particular case I'm talking about, by forward

differences.

And what will result is a difference equation, and consequently what also results is a digital

filter. Incidentally, I'm talking about this here for the case of forward differences in the text to

see the contrast. We talk about a similar procedure, but with the use of backward differences

rather than forward differences.

All right, well let's see, in fact, what happens then. We want to replace a first derivative by a

first forward difference. More generally, what we would want to replace a k-th derivative by is

the k-th forward difference, where the k-th forward difference is defined iteratively. In other

words, the k-th forward difference of y of n is the first forward difference of the k minus first

forward difference of y of n. Simply the k-th forward difference to correspond to the k-th

derivative is the first difference implemented over and over and over again, k times.

So what results then by making this substitution, is that the differential equation that we had,

which was a linear combination of the derivatives of y of t equal to a linear combination of the

derivatives of x of t, that's replaced by the same linear combination of the k-th difference of y

of n equal to the corresponding linear combination of the k-th differences of x of n. And this

then is a difference equation, because of the fact that each of these differences, each of these

four differences, or the k-th forward difference, involves differences of y of n. That is why even

plus 1 minus y of n So this is a difference equation derived from the differential equation by



replacing the k-th derivative by the k-th forward difference.

Well let's see what this means in terms of the mapping from the s-plane to the z-plane. First of

all, let me remind you that in the continuous time domain, the Laplace transform of the

derivative of a time function is equal to s times the Laplace transform of the time function. That

is, the operation of differentiation in the Laplace transform domain gets carried over to a

multiplication by s.

Similarly, we can look at the z transform of the first difference, the z transform of the first

difference, y of n plus 1 minus y of n divided by T, simply by applying the properties of z

transforms, results in z minus 1 divided by T times the z transform of y of n. So the operation

of taking the first difference corresponds to multiplying the z transform by z minus 1 divided by

T.

So in the continuous time domain, the derivative corresponded to multiplication by s. In the z

transform domain, first differencing corresponded to multiplication by z minus 1 divided by T.

And it's straightforward to show that, in fact, the k-th forward difference corresponds to

multiplying by z minus 1 over t to the k. And we know that the k-th derivative corresponds to

multiplication by s to the k.

So if you track that through, put that into the difference equation, and obtain the system

function for the digital system, and compare it with the system function for the analog system,

what you see resulting is that the operation of replacing differentials by differences

corresponds to obtaining the transfer function of the digital filter from the transfer function of

the analog filter by the substitution s equal to z minus 1 divided by T. So it's basically a

mapping then, S being replaced by z minus 1 over T, or equivalently, z is equal to 1 plus s

times T. First point then is that this technique in fact corresponds to a mapping from the s-

plane to the z-plane, with s replaced by a function of z.

Well, let's see what this mapping is, in fact, and decide whether it satisfies the objectives that

we set down before. Here is a picture of the s-plane, and here's the j omega axis. Below we

have the z-plane, the imaginary axis, real axis, and the unit circle. And the first question is,

what does the j omega axis in the s-plane map to in the z-plane? Well, we substitute s equals j

omega, so that z is equal to 1 plus j omega times T. Consequently, the j omega axis in the s-

plane for this particular method maps to this line in the z-plane.

Well, is that good? No, it's not good, because it says that if we saw a good filter as we ran up



and down this axis, we would see a good filter as we run up and down this line. However,

where we are interested in the filter characteristics ending up are on the unit circle, which in

fact, are only close to this line when we're in the vicinity of z equal to 1.

So in fact, the first condition that we wanted isn't satisfied, namely the j omega axis does not

get mapped to the unit circle. Furthermore, stable analog filters do not necessarily map to

stable digital filters. For example, if we had a pole, let's say in the s-plane there, then it would

fall in the z-plane, let's say there.

Well, that's all right. That's a stable pole, stable analog filter mapping to a stable digital filter.

However, here's an even more stable analog filter. And if this pole is negative enough, then in

fact, it falls outside the unit circle in the z-plane, and consequently the digital filter will be

unstable.

That incidentally is a well-known property in numerical analysis of forward differences-- that is,

the notion that forward differences are unstable. And this is one way of seeing that by

interpreting it in terms of a mapping from the s-plane to the z-plane. We know incidentally that

at least in an intuitive sense, it's reasonable to imagine that if we pick samples of a continuous

time signal close enough together, that at least intuitively we ought to be able to approximate a

derivative by a difference. And in fact, that fits in with the kinds of things that we've been

seeing here in the following sense.

If we very highly oversample the signal, much higher than the Nyquist rate, then in fact, the

portion of the z-plane where the signal spectrum falls is the portion of the z-plane around in

the vicinity of z equal to 1. And you can see that in that case, that portion of the unit circle is

pretty close to this line which was the mapping from the j omega axis into the z-plane. And so

consequently, if we oversample rather extensively, then we can, in fact, map, more or less, our

analog filter to a digital filter. But in fact, in the more usual case, the digital signal spectrum

occupies the entire unit circle. And clearly away from the regions equals 1, the unit circle

deviates rather dramatically from this vertical line.

All right, so this is a method then of filter design, which didn't satisfy either one of our initial

guidelines. Namely, it didn't map the j omega axis to the unit circle. And also, it didn't map a

stable analog filter to a stable digital filter.

Well, let's go on to a second method, which is better in both of those respects. And this is a

method that is commonly referred to as the method of impulse invariance. And again, it's a



method that is commonly referred to as the method of impulse invariance. And again, it's a

filter design method, which intuitively is very reasonable. The basic idea of impulse invariance

is to convert an analog filter to a digital filter, simply by choosing the unit sample response of

the digital filter to be equally spaced samples of the impulse response of the analog filter. So

the unit sample response h of n is chosen to be equally spaced samples, samples spaced by

T, equally spaced samples of the analog or continuous time filter.

Well, in at least one sense, we can see that this certainly leads to a good filter. And that is, if

we had a continuous time analog filter that had good impulse response characteristics, then

those good impulse response characteristics would be carried over to the digital filter unit

sample response. For example, if we were interested in a filter with very low ringing or very

short impulse response, then if we had an analog filter with those characteristics, then the

digital filter would likewise have good impulse response characteristics.

However we've been phrasing most of our discussion in terms of frequency response

characteristics, we know from the discussion of sampling that we had a number of lectures

ago that periodic sampling of this type results in a frequency response for the digital system,

which is basically an aliased version of the frequency response for the analog system. That is,

the digital frequency response is given by the sum that I've indicated here, which consists of

scaled replicas of the Fourier transform of the analog filter, repeated over and over again with

a spacing in little omega of 2 pi. Well, let's take a look at that in a little more detail.

Here we have the analog frequency response. And let's say that we're considering this for the

case of a low-pass filter, which is what we've tended to focus on in this lecture. So that if we

had an analog low-pass filter, cutoff frequency between minus omega sub a and plus omega

sub a, then in forming the digital filter frequency response, we first want to form h sub a of j

omega divided by T, and then shift that in omega by integer multiples of 2 pi and add up those

results.

So the first step is the scaling, basically replacing Omega by omega divided by T, in which

case plotted as a function of omega, the cutoff frequency is then omega sub a T and minus

omega sub a T, so that this step results in a linear scaling of the frequency axis so that Omega

is replaced by omega divided by T. The second step then is to add together replicas of this

analog frequency response separated in omega by integer multiples of 2 pi. And that's what

I've indicated here. Of course, this periodically repeats over and over again, but I've sketched

it just from minus 2 pi to plus 2 pi. We have the factor 1 over T out in front for the amplitude.



But an important aspect of this is that we have in going from the analog frequency variable to

the digital frequency variable, a linear scaling in the frequency axis. That doesn't show up

particularly for a piecewise constant frequency characteristic as I have here. But generally, if I

had some complicated shape, then when I convert to h sub a of j omega over T, that basic

shape will be preserved. And it will only be distorted by a linear scaling in the frequency axis.

And that is an important advantage of the technique of impulse invariance.

Now there are some problems, one in particular. And this is the major problem. And that is that

as I've drawn this example, we've considered an analog filter whose frequency response is

strictly bandlimited. And so of course there is no aliasing that results.

But more generally, the kind of frequency characteristic that we would have would look

perhaps like this, as an approximation, admittedly a somewhat crude approximation, to this

ideal low-pass filter. In which case, as we add up the replicas of the scaled frequency

response, then we in general will have interference or aliasing between different terms in this

sum. So that in that case, while we start with an analog frequency characteristic that's

desirable, the resulting digital frequency characteristic will be distorted somewhat because of

the aliasing that results due to the separate terms that are added together in this sum. And

one of the important aspects of implementing an impulse invariant filter design, then, is to in

some way account for and hopefully minimize the effect of this aliasing.

All right, so with the impulse invariant method, one of the important advantages of impulse

invariance is the fact that it tends to preserve good time domain characteristics. That is, the

impulse response characteristics were preserved. And also, it provides a linear scaling from

analog frequency to digital frequency so that if we had an analog filter with a very complicated

frequency response, then we could be assured that the corresponding digital filter except for

aliasing would have that same shape, but only with a linear scaling of the frequency axis.

It should be pointed out incidentally that impulse invariance doesn't imply step invariance, and

you'll see this in the problems that you work through the study guide. Impulse invariance does

not imply step invariance so that in fact, if it was the step response characteristics that we

wanted to preserve, then the technique here isn't what we would use. We would use a

modified technique, which would be not impulse invariance, but step invariance.

Well, let's finally look at what impulse invariance means in terms of a mapping from the s-

plane to the z-plane. Let's look at it in a slightly different way than we've looked at it here. And



we can do that by expressing the analog system function in a partial fraction expansion, in

terms of a sum of factors of this form. So we have residues A sub k, poles s at s equals s of k,

and we're expressing the system function as a linear combination of terms of this form.

If there are multiple order poles, this expression is slightly more complicated. And what I'm

about to say can be generalized to that case. But let's consider it here just for the case of

simple poles, so that the system function in fact can be expanded out in the form that I have

here.

All right, well, if this is the analog system function, then you should recall that the analog

impulse response-- that is, the inverse Laplace transform of this-- is the sum of exponentials

with amplitudes A sub k, the same amplitudes as we have here, and complex exponentials e

to s sub k. And this should be a t, not a T. That is time, t.

So this then is the form of the impulse response, which corresponds to this system function.

And now the impulse invariant method says, replace this by a unit sample response for the

digital filter, which is obtained by replacing t by n times T. That is, obtaining the unit sample

response of the digital filter by sampling the impulse response of the analog filter, in which

case we get the sum of A sub k, E to s of k. And now time, t, is replaced by n times T.

A sampled unit step, a sampled analog unit step, results in a discrete time unit step. And so

consequently, the unit sample response that we end up with is A sub k, the same coefficients

as we had here, e to the s sub k, n times T times the unit step.

Well, we can write that in a slightly different way. We can write that as the sum of A sub k, and

some factor, e to the s sub k T is what it is. Some factor raised to the n-th power times the unit

step. And consequently we can write down by inspection the z transform or system function

that corresponds to this unit sample response. In particular, it is H of z equal to the sum of A

sub k, times 1 minus 8, e the s of k times T z to the minus 1, that's simply by inspection of this

expression.

All right. Well, so we started with an analog system function of this form, these coefficients in

these poles. We ended up with a digital system function of this form, the same coefficients,

and poles instead of at s sub k, as they were in the analog case, at e to the s sub k T.

So this says then that the impulse invariant method maps a pole in the s-plane which was at s

sub k, maps it to a pole in the z-plane at z equal to e to the s sub k, T. Well, does that mean



that impulse invariance is basically a method which maps s to z according to this

transformation.

Well no, it doesn't do that. What it does is it maps the poles in the s-plane to poles in the z-

plane according to this mapping. The other thing that it preserves are these coefficients, the

coefficients A sub k, that is the residues of the poles. So it maintains the residues of the poles.

It maps the poles according to z equals e to the st.

The 0s, by the way, in general will not come out to have been mapped according to the same

mappings equals e to the st. In other words, if we had a 0 at s equals s sub 0, as we'll see

actually in an example that we'll work next time, the 0 in the z-plane will not come out, will not

come out at z equals e to the s 0 T. The poles are mapped according to that mapping, and the

residues are preserved. And that is essentially what defines the impulse invariant mapping.

Well, we had our two initial guidelines. One is that we want the behavior on the j omega axis to

map to the behavior in the digital domain on the unit circle. Does the impulse invariant method

do that? Well, it does, except for the effect of aliasing. But basically, it is the analog frequency

response that dictates what the digital frequency response is. And so in that sense, impulse

invariance satisfies that objective. The second question is whether it maintains the ability of the

filter. And the answer there also is that it does, so we can see that very easily.

In particular, if we have an analog pole with a real part sigma sub k, an imaginary part omega

sub k, then the digital pole, the pole of the digital filter, maps to z sub k equal to e to the s sub

k T, e to the j omega sub k T. And the magnitude of this is equal to of course, the product of

the magnitudes. The magnitude of this term is unity. So all that we care about is the

magnitude of the sigma sub k T. Well, if the analog filter is stable, sigma sub k is negative. If

sigma sub k is negative, then either the sigma sub k T has a magnitude less than 1. So

consequently, if the real part of s sub k is less than 0, negative, then the magnitude of z sub k,

the magnitude of the pole is less than 1.

So this in fact is a digital filter design technique that has a number of advantages. And in fact,

it's a very useful design technique. It's one of the standard digital filter design techniques.

In the next lecture, I will briefly present an example of an impulse invariant design, just simply

to remind you actually again of the fact that aliasing is an issue, number one, and number two,

that it maps poles according to z equals z to the st, but not 0s. In fact, the 0s end up

someplace else. And in addition in that lecture, we'll talk about another design technique,



which is likewise one of the classical digital filter design methods, which is referred to as the

bilinear transformation. And the lecture following that then I will show some examples of some

digital filter designs, using both impulse invariance and the bilinear transformation to compare

them. Thank you.


