LECTURE 1: Probability models and axioms

- Sample space
- Probability laws
- Axioms
- Properties that follow from the axioms
- Examples
- Discrete
- Continuous
- Discussion
- Countable additivity
- Mathematical subtleties
- Interpretations of probabilities

Sample space

- Two steps:
- Describe possible outcomes
- Describe beliefs about likelihood of outcomes

Sample space

- List (set) of possible outcomes, Ω
- List must be:
- Mutually exclusive
- Collectively exhaustive
- At the "right" granularity

Sample space: discrete/finite example

- Two rolls of a tetrahedral die
sequential description

Sample space: continuous example

- (x, y) such that $0 \leq x, y \leq 1$

Probability axioms

- Event: a subset of the sample space
- Probability is assigned to events
- Axioms:
- Nonnegativity: $\mathbf{P}(A) \geq 0$
- Normalization: $P(\Omega)=1$
- (Finite) additivity: (to be strengthened later) If $A \cap B=\varnothing$, then $\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)$

Some simple consequences of the axioms

Axioms

$\mathbf{P}(A) \geq 0$
$\mathbf{P}(\Omega)=1$

For disjoint events:
$\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)$

Consequences

$$
\begin{aligned}
& \mathrm{P}(A) \leq 1 \\
& \mathrm{P}(\varnothing)=0
\end{aligned}
$$

$$
\mathbf{P}(A)+\mathbf{P}\left(A^{c}\right)=1
$$

$$
\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}(B)+\mathbf{P}(C)
$$

and similarly for k disjoint events

$$
\begin{aligned}
\mathbf{P}\left(\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\right) & =\mathbf{P}\left(\left\{s_{1}\right\}\right)+\cdots+\mathbf{P}\left(\left\{s_{k}\right\}\right) \\
& =\mathbf{P}\left(s_{1}\right)+\cdots+\mathbf{P}\left(s_{k}\right)
\end{aligned}
$$

Some simple consequences of the axioms

Axioms
$\mathbf{P}(A) \geq 0$
$P(\Omega)=1$

For disjoint events:
$\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)$

Some simple consequences of the axioms

- A, B, C disjoint: $\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}(B)+\mathbf{P}(C)$
- $\mathbf{P}\left(\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\right)=$

More consequences of the axioms

- If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$
- $\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)$
- $\mathbf{P}(A \cup B) \leq \mathbf{P}(A)+\mathbf{P}(B)$

More consequences of the axioms

- $\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}\left(A^{c} \cap B\right)+\mathbf{P}\left(A^{c} \cap B^{c} \cap C\right)$

Probability calculation: discrete/finite example

- Two rolls of a tetrahedral die
- Let every possible outcome have probability $1 / 16$
- $\mathbf{P}(X=1)=$

Let $Z=\min (X, Y)$

- $\mathbf{P}(Z=4)=$
- $\mathrm{P}(Z=2)=$

Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

$$
\mathbf{P}(A)=
$$

- (x, y) such that $0 \leq x, y \leq 1$
- Uniform probability law: Probability $=$ Area

$$
\begin{aligned}
& \mathbf{P}(\{(x, y) \mid x+y \leq 1 / 2\})= \\
& \mathbf{P}(\{(0.5,0.3)\})=
\end{aligned}
$$

Probability calculation steps

- Specify the sample space
- Specify a probability law
- Identify an event of interest
- Calculate...

Probability calculation: discrete but infinite sample space

- Sample space: $\{1,2, \ldots\}$
- We are given $\mathrm{P}(n)=\frac{1}{2^{n}}, \quad n=1,2, \ldots$

- $\mathbf{P}($ outcome is even $)=$

Countable additivity axiom

- Strengthens the finite additivity axiom

Countable Additivity Axiom:

If $A_{1}, A_{2}, A_{3}, \ldots$ is an infinite sequence of disjoint events, then $\mathbf{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\mathbf{P}\left(A_{3}\right)+\cdots$

Countable Additivity Axiom:

If $A_{1}, A_{2}, A_{3}, \ldots$ is an infinite sequence of disjoint events, then $\mathrm{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\mathrm{P}\left(A_{3}\right)+\cdots$

- Additivity holds only for "countable" sequences of events
- The unit square (similarly, the real line, etc.) is not countable (its elements cannot be arranged in a sequence)
- "Area" is a legitimate probability law on the unit square, as long as we do not try to assign probabilities/areas to "very strange" sets

Interpretations of probability theory

- A narrow view: a branch of math
- Axioms \Rightarrow theorems "Thm:" "Frequency" of event A "is" $\mathbf{P}(A)$
- Are probabilities frequencies?
- $P($ coin toss yields heads $)=1 / 2$
- \mathbf{P} (the president of \ldots will be reelected) $=0.7$
- Probabilities are often intepreted as:
- Description of beliefs
- Betting preferences

The role of probability theory

- A framework for analyzing phenomena with uncertain outcomes
- Rules for consistent reasoning
- Used for predictions and decisions

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

