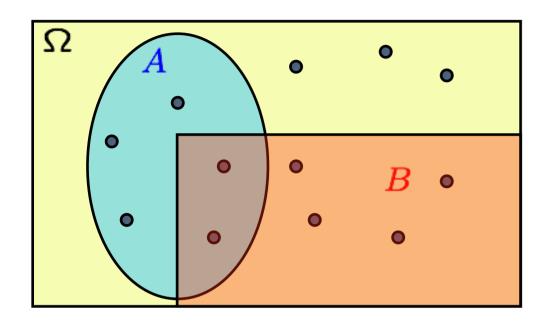
LECTURE 2: Conditioning and Bayes' rule

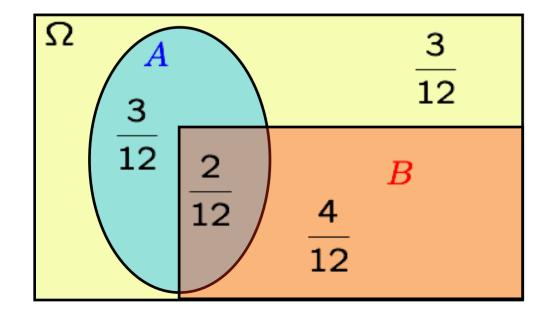
- Conditional probability
- Three important tools:
 - Multiplication rule
 - Total probability theorem
 - Bayes' rule (→ inference)

The idea of conditioning Use new information to revise a model

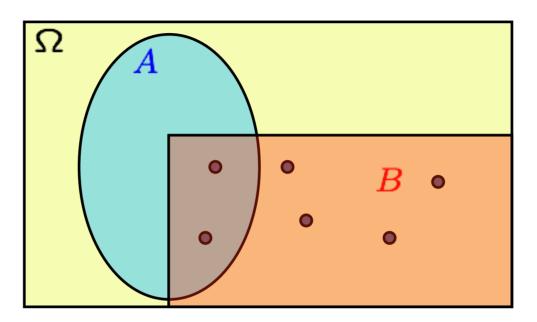
Assume 12 equally likely outcomes



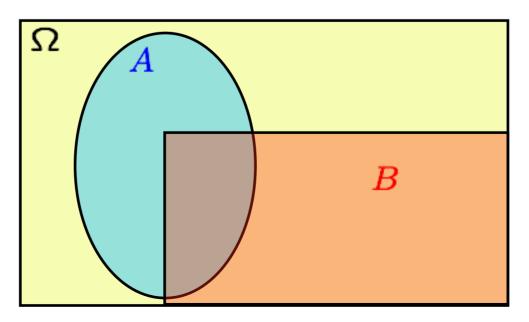
$$P(A) = \frac{5}{12}$$
 $P(B) = \frac{6}{12}$



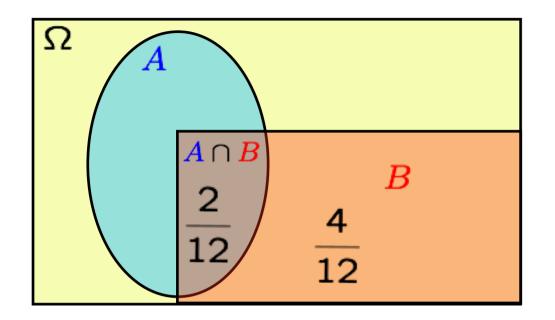
If told *B* occurred:



$$P(A \mid B) = P(B \mid B) =$$



Definition of conditional probability

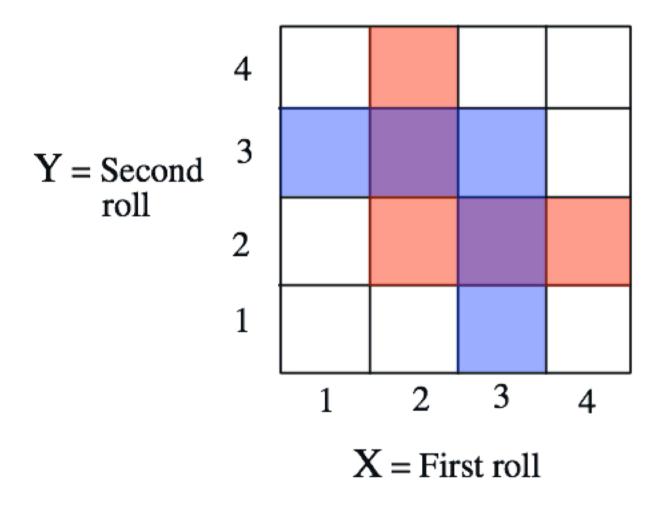


• P(A | B) = "probability of A, given that B occurred"

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

defined only when P(B) > 0

Example: two rolls of a 4-sided die



• Let B be the event: min(X, Y) = 2Let M = max(X, Y)

$$P(M = 1 | B) =$$

$$P(M = 3 | B) =$$

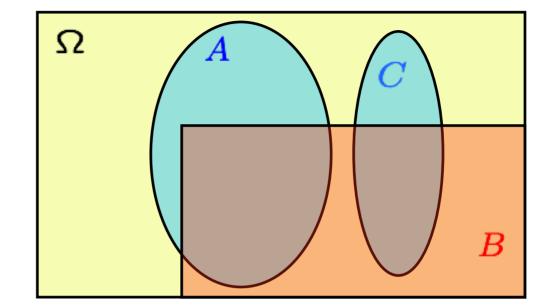
Conditional probabilities share properties of ordinary probabilities

$$P(A \mid B) \geq 0$$

assuming P(B) > 0

$$P(\Omega \mid B) =$$

$$P(B \mid B) =$$



If
$$A \cap C = \emptyset$$
, then $P(A \cup C \mid B) = P(A \mid B) + P(C \mid B)$

Models based on conditional probabilities

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)} \quad P(B \mid A) = \frac{P(A \cap B)}{P(A)}$

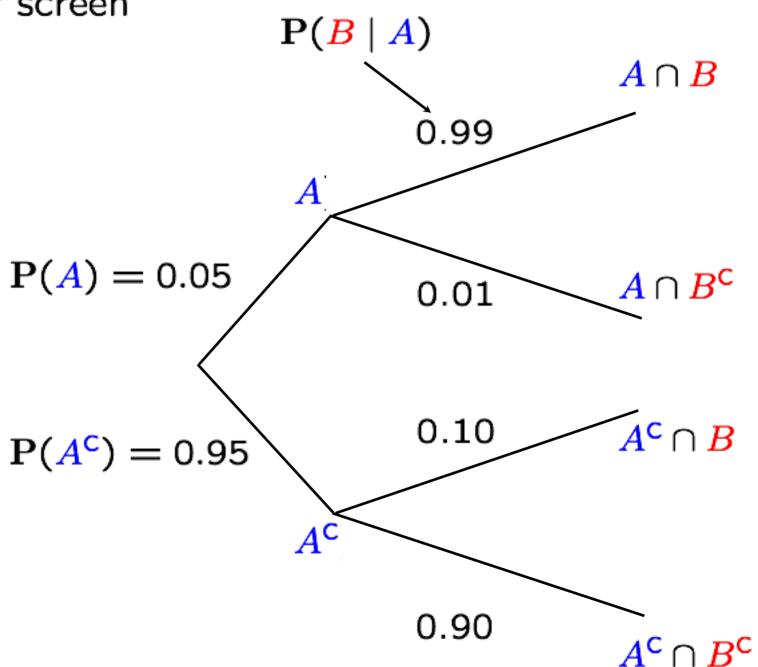
Event A: Airplane is flying above

Event B: Something registers on radar screen

• $P(A \cap B) =$

 \bullet P(B) =

 \bullet P(A | B) =

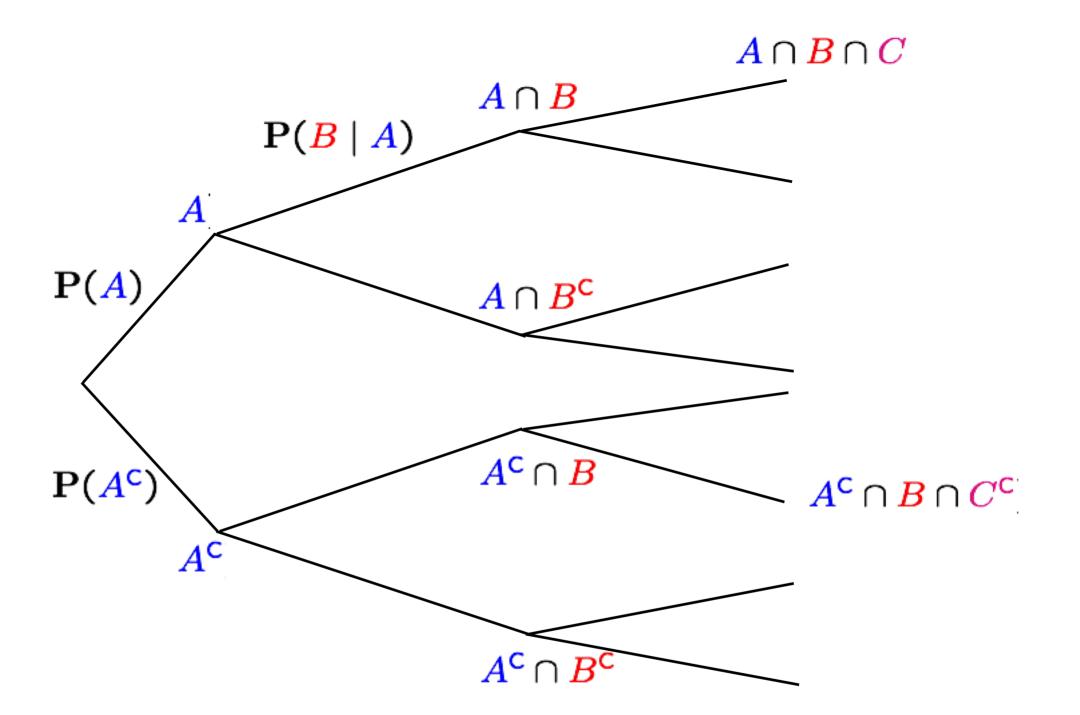


The multiplication rule

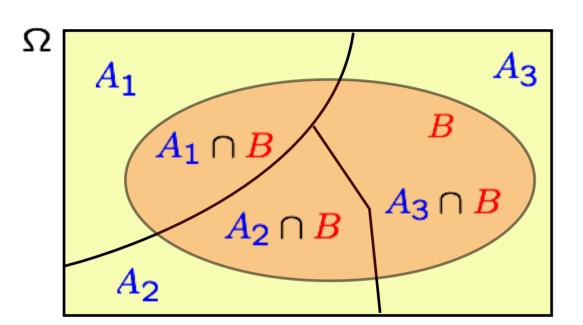
$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

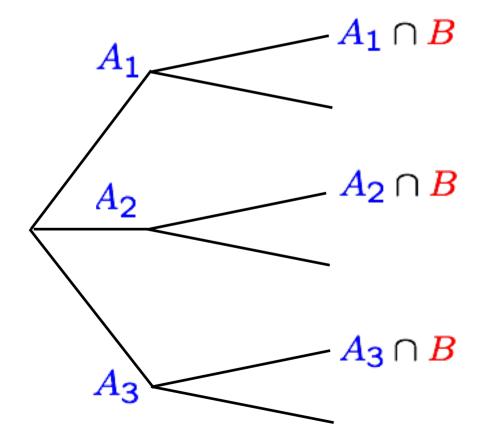
$$P(A \cap B) = P(B) P(A \mid B)$$
$$= P(A) P(B \mid A)$$

$$P(A^{c} \cap B \cap C^{c}) =$$



Total probability theorem



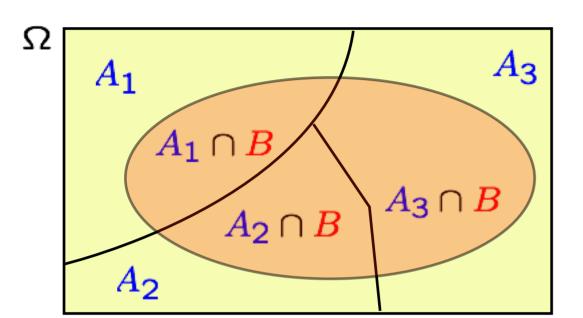


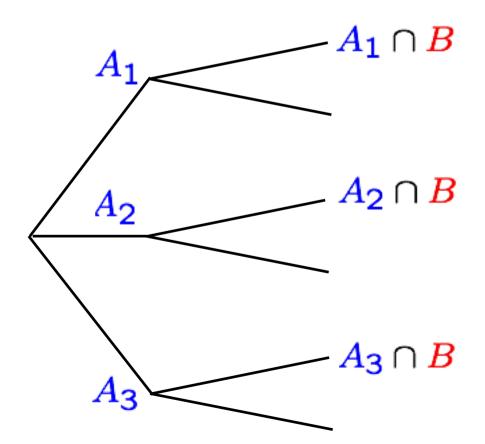
- Partition of sample space into A_1, A_2, A_3
- Have $P(A_i)$, for every i
- Have $P(B | A_i)$, for every i

$$P(B) =$$

$$\mathbf{P}(B) = \sum_{i} \mathbf{P}(A_i) \, \mathbf{P}(B \mid A_i)$$

Bayes' rule





- Partition of sample space into A_1, A_2, A_3
- Have $P(A_i)$, for every i initial "beliefs"
- Have $P(B | A_i)$, for every i

revised "beliefs," given that B occurred:

$$P(A_i \mid B) =$$

$$\mathbf{P}(A_i \mid B) = \frac{\mathbf{P}(A_i)\mathbf{P}(B \mid A_i)}{\sum_j \mathbf{P}(A_j)\mathbf{P}(B \mid A_j)}$$

Bayes' rule and inference

- Thomas Bayes, presbyterian minister (c. 1701-1761)
- "Bayes' theorem," published posthumously
- systematic approach for incorporating new evidence
- Bayesian inference
 - initial beliefs $P(A_i)$ on possible causes of an observed event B
 - model of the world under each A_i : $P(B \mid A_i)$

$$A_i \xrightarrow{\mathsf{model}} B$$
 $\mathbf{P}(B \mid A_i)$

draw conclusions about causes

$$\frac{B}{P(A_i \mid B)} \xrightarrow{A_i}$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.