LECTURE 2: Conditioning and Bayes' rule

- Conditional probability
- Three important tools:
- Multiplication rule
- Total probability theorem
- Bayes' rule (\longrightarrow inference)

The idea of conditioning
Use new information to revise a model
Assume 12 equally likely outcomes

If told B occurred:

$$
\mathbf{P}(\underline{A} \mid \underline{B})=\frac{2}{6}=\frac{1}{3} \quad \mathbf{P}(B \mid B)=1
$$

Definition of conditional probability

- $\mathbf{P}(A \mid B)=$ "probability of A, given that B occurred"
$\xrightarrow{\text { Def. }} \mathrm{P}(A \mid B) \stackrel{\Delta}{\stackrel{\mathrm{P}(A \cap B)}{\mathbf{P}_{0}(B)}} \leftarrow=\frac{2 / 12}{6 / 12}=\frac{1}{3}$

$$
\text { defined only when } \mathbf{P}(B)>0
$$

Example: two rolls of a 4-sided die

$$
=\frac{2 / 16}{5 / 16}=\frac{2}{5}
$$

Conditional probabilities share properties of ordinary probabilities

$$
\begin{aligned}
& \mathrm{P}(A \mid B) \geq 0 \quad \text { assuming } \mathrm{P}(B)>0 \\
& \mathrm{P}(\Omega \mid B)=\frac{P(\Omega \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1 \\
& \mathrm{P}(B \mid B)=\frac{P(B \cap B)}{P(B)}=1 \\
& \text { If } A \cap C=\varnothing, \quad \text { then } \mathrm{P}(\underbrace{(A \cup C \mid B)=P(A \mid B)+P(C \mid B)} \\
& =\frac{P((A \cup C) \cap B)}{P(B)}=\frac{P((A \cap B) \cup(C \cap B))}{\underline{P}(B)}=\frac{P(A \cap B)+P(C \cap B)}{P(B)}= \\
& =P(A \mid B)+P(C \mid B) \quad a l s o \text { finite } \\
& \quad \text { countable adolitivity }
\end{aligned}
$$

Models based on conditional probabilities
 $$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} \quad \mathbf{P}(B \mid A)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}
$$

Event A : Airplane is flying above
Event B : Something registers on radar screen

- $P(A \cap B)=P(A) \cdot P(B \mid A)=0.05 \cdot 0.99$
- $\mathrm{P}(B)=0.05 \cdot 0.99$

$$
+0.95 \cdot 0.1=0.1445
$$

$$
0.05 \cdot 0.99
$$

- $\mathrm{P}(A \mid B)=\frac{0.1445}{0.14}=0.34$

$$
\mathbf{P}\left(A^{\mathrm{C}}\right)=0.95
$$

The multiplication rule

$$
\begin{aligned}
\mathbf{P}(A \mid B) & =\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} \\
\mathbf{P}(A \cap B) & =\mathbf{P}(B) \mathbf{P}(A \mid B) \\
& =\mathbf{P}(A) \mathbf{P}(B \mid A)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}(\underbrace{A^{c} \cap B}) \cap C^{c})= \\
& =\int\left(A^{c} \cap B\right) \underline{P}\left(C^{c} \mid A^{c} \cap B\right) \\
& =\underline{P}\left(A^{c}\right) \cdot \underline{P}\left(B \mid A^{c}\right) \underline{P}\left(C^{c} \mid A^{c} \cap B\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) \\
= & P\left(A_{1}\right) \prod_{i=2}^{n} P\left(A_{i} \mid A_{1} \cap \cdots \cap A_{i-1}\right)
\end{aligned}
$$

Total probability theorem

- Partition of sample space into $A_{1}, A_{2}, A_{3}, \ldots$
- Have $\mathbf{P}\left(A_{i}\right)$, for every i
- Have $\mathbf{P}\left(B \mid A_{i}\right)$, for every i

$$
\begin{aligned}
& P(B)=P\left(B \cap A_{1}\right)+\perp\left(B \cap A_{2}\right)+I\left(B \cap A_{3}\right) \\
&=P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\cdots+\cdots \\
& \sum_{i} P\left(A_{i}\right)=1 \\
& \begin{aligned}
\mathrm{P}(B) & =\sum_{i} P\left(A_{i}\right) P\left(B \mid A_{i}\right) \quad \begin{aligned}
\text { weighted a menage } \\
\text { of } P\left(B \mid A_{i}\right)
\end{aligned}
\end{aligned}
\end{aligned}
$$

Bayes' rule

- Partition of sample space into A_{1}, A_{2}, A_{3}
- Have $\mathbf{P}\left(A_{i}\right)$, for every i initial "beliefs"
- Have $\mathbf{P}\left(B \mid A_{i}\right)$, for every i
revised "beliefs," given that B occurred:

$$
\mathbf{P}\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{\underline{P}(B)}
$$

$$
\mathbf{P}\left(A_{i} \mid B\right)=\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\sum_{j} \mathbf{P}\left(A_{j}\right) \mathbf{P}\left(B \mid A_{j}\right)}
$$

Bayes' rule and inference

- Thomas Bayes, presbyterian minister (c. 1701-1761)
- "Bayes' theorem," published posthumously
- systematic approach for incorporating new evidence
- Bayesian inference
- initial beliefs $\mathbf{P}\left(A_{i}\right)$ on possible causes of an observed event B
- model of the world under each $A_{i}: \mathbf{P}\left(B \mid A_{i}\right)$

$$
A_{i} \xrightarrow[\mathbf{P}\left(B \mid A_{i}\right)]{\text { model }} B
$$

- draw conclusions about causes

$$
B \xrightarrow[\mathbf{P}\left(A_{i} \mid B\right)_{0}]{\text { inference }} A_{i}
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

