LECTURE 3: Independence

- Independence of two events
- Conditional independence
- Independence of a collection of events
- Pairwise independence
- Reliability
- The king's sibling puzzle

A model based on conditional probabilities

- 3 tosses of a biased coin: $\mathbf{P}(H)=p, \mathbf{P}(T)=1-p$

- Multiplication rule: $\mathbf{P}(T H T)=$
- Total probability:

$$
\mathbf{P}(1 \text { head })=
$$

- Bayes rule:
$\mathbf{P}($ first toss is $\mathrm{H} \mid 1$ head $)=$

Independence of two events

- Intuitive "definition": $\mathbf{P}(B \mid A)=\mathbf{P}(B)$
- occurrence of A provides no new information about B

Definition of independence: $\quad \mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$

Independent?

- Symmetric with respect to A and B
- implies $\mathbf{P}(A \mid B)=\mathbf{P}(A)$
- applies even if $\mathbf{P}(A)=0$

Independence of event complements

Definition of independence: $\quad \mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$

- If A and B are independent, then A and B^{c} are independent.
- Intuitive argument - Formal proof

Conditional independence

- Conditional independence, given C, is defined as independence under the probability law $\mathbf{P}(\cdot \mid C)$

Assume A and B are independent

- If we are told that C occurred, are A and B independent?

Conditioning may affect independence

- Two unfair coins, A and B : $\mathbf{P}(H \mid \operatorname{coin} A)=0.9, \mathbf{P}(H \mid \operatorname{coin} B)=0.1$
- choose either coin with equal probability
- Are coin tosses independent?

- Compare:
\mathbf{P} (toss $11=H$)
\mathbf{P} (toss $11=H \mid$ first 10 tosses are heads)

Independence of a collection of events

- Intuitive "definition": Information on some of the events does not change probabilities related to the remaining events

Definition: Events $A_{1}, A_{2}, \ldots, A_{n}$ are called independent if:
$\mathrm{P}\left(A_{i} \cap A_{j} \cap \cdots \cap A_{m}\right)=\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(A_{j}\right) \cdots \mathrm{P}\left(A_{m}\right) \quad$ for any distinct indices i, j, \ldots, m
$n=3:$
$\mathbf{P}\left(A_{1} \cap A_{2}\right)=\mathbf{P}\left(A_{1}\right) \cdot \mathbf{P}\left(A_{2}\right)$
$\mathbf{P}\left(A_{1} \cap A_{3}\right)=\mathbf{P}\left(A_{1}\right) \cdot \mathbf{P}\left(A_{3}\right) \quad$ pairwise independence
$\left.\mathbf{P}\left(A_{2} \cap A_{3}\right)=\mathbf{P}\left(A_{2}\right) \cdot \mathbf{P}\left(A_{3}\right)\right\}$
$\mathbf{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbf{P}\left(A_{1}\right) \cdot \mathbf{P}\left(A_{2}\right) \cdot \mathbf{P}\left(A_{3}\right)$

Independence vs. pairwise independence

- Two independent fair coin tosses
$-H_{1}$: First toss is H
- H_{2} : Second toss is H

$$
\mathbf{P}\left(H_{1}\right)=\mathbf{P}\left(H_{2}\right)=1 / 2
$$

$H H$	$H T$
$T H$	$T T$

- C : the two tosses had the same result

Reliability

p_{i} : probability that unit i is "up"
independent units

probability that system is "up"?

The king's sibling

- The king comes from a family of two children. What is the probability that his sibling is female?

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

