LECTURE 3: Independence

- Independence of two events
- Conditional independence
- Independence of a collection of events
- Pairwise independence
- Reliability
- The king's sibling puzzle

1

A model based on conditional probabilities

• 3 tosses of a biased coin: P(H) = p, P(T) = 1 - p

- Multiplication rule: P(THT) =
- Total probability:

P(1 head) =

Bayes rule:

P(first toss is H | 1 head) =

Independence of two events

• Intuitive "definition": P(B | A) = P(B)

- occurrence of A provides no new information about B

Definition of independence: $P(A \cap B) = P(A) \cdot P(B)$

- Symmetric with respect to A and B
- implies P(A | B) = P(A)
- applies even if P(A) = 0

Independence of event complements

- If A and B are independent, then A and B^c are independent.
 - Intuitive argument
 Formal proof

4

Conditional independence

• Conditional independence, given C, is defined as independence under the probability law $\mathbf{P}(\cdot \mid C)$

• If we are told that C occurred, are A and B independent?

Assume A and B are independent

Conditioning may affect independence

- Two unfair coins, A and B: P(H | coin A) = 0.9, P(H | coin B) = 0.1
- choose either coin with equal probability •

Compare: P(toss 11 = H)

 $P(toss \ 11 = H \mid first \ 10 \ tosses \ are \ heads)$

•

Are coin tosses independent?

Independence of a collection of events

Intuitive "definition": Information on some of the events does not change probabilities related to the remaining events

Definition: Events A_1, A_2, \ldots, A_n are called **independent** if: $P(A_i \cap A_j \cap \cdots \cap A_m) = P(A_i)P(A_j) \cdots P(A_m)$ for any distinct indices i, j, \dots, m

n = 3:

 $\begin{array}{l} \mathbf{P}(A_1 \cap A_2) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_2) \\ \mathbf{P}(A_1 \cap A_3) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_3) \end{array} \right\} \hspace{1.5cm} \text{pairwise independence} \\ \end{array}$ $\mathbf{P}(A_2 \cap A_3) = \mathbf{P}(A_2) \cdot \mathbf{P}(A_3)$

 $\mathbf{P}(A_1 \cap A_2 \cap A_3) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_2) \cdot \mathbf{P}(A_3)$

7

Independence vs. pairwise independence

- Two independent fair coin tosses
 - H_1 : First toss is H
 - H_2 : Second toss is H

 $P(H_1) = P(H_2) = 1/2$

• C: the two tosses had the same result

HH
TH

H_1 , H_2 , and C are pairwise independent, but not independent

HT
TT

Reliability

 p_i : probability that unit *i* is "up"

independent units

probability that system is "up"?

The king's sibling

• The king comes from a family of two children. What is the probability that his sibling is female? MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.