LECTURE 4: Counting

Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

Then: $\quad \mathbf{P}(A)=\frac{\text { number of elements of } A}{\text { number of elements of } \Omega}=\frac{k}{n}$

- Basic counting principle
- Applications
permutations combinations partitions
number of subsets binomial probabilities

Basic counting principle

4 shirts
3 ties
2 jackets
Number of possible attires?

- r stages
- n_{i} choices at stage i

Number of choices is:

Basic counting principle examples

- Number of license plates with 2 letters followed by 3 digits:
- ... if repetition is prohibited:
- Permutations: Number of ways of ordering n elements:
- Number of subsets of $\{1, \ldots, n\}$:

Example

- Find the probability that: six rolls of a (six-sided) die all give different numbers.
(Assume all outcomes equally likely.)

Combinations • Definition: $\binom{n}{k}: \begin{aligned} & \text { number of } k \text {-element subsets } \\ & \text { of a given } n \text {-element set }\end{aligned}=\frac{n!}{k!(n-k)!}$

- Two ways of constructing an ordered sequence of k distinct items:
- Choose the k items one at a time
- Choose k items, then order them

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& \binom{n}{n}= \\
& \binom{n}{0}= \\
& \sum_{k=0}^{n}\binom{n}{k}=
\end{aligned}
$$

Binomial coefficient $\binom{n}{k} \longrightarrow$ Binomial probabilities

- $n \geq 1$ independent coin tosses; $\quad \mathbf{P}(H)=p$

$$
\mathbf{P}(k \text { heads })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- $\mathbf{P}(H T T H H H)=$
- $\mathbf{P}($ particular sequence $)=$
- \mathbf{P} (particular k-head sequence)
$\mathbf{P}(k$ heads $)=$

A coin tossing problem

- Given that there were 3 heads in 10 tosses, what is the probability that the first two tosses were heads?

Assumptions:

- independence
- $\mathbf{P}(H)=p$
- event A : the first 2 tosses were heads
- event B: 3 out of 10 tosses were heads

$$
\mathbf{P}(k \text { heads })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- First solution:

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}=
$$

A coin tossing problem

- Given that there were 3 heads in 10 tosses, what is the probability that the first two tosses were heads?

Assumptions:

- independence
- $\mathbf{P}(H)=p$
- event A : the first 2 tosses were heads
- event B: 3 out of 10 tosses were heads

$$
\mathbf{P}(k \text { heads })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Second solution: Conditional probability law (on B) is uniform

Partitions

- $n \geq 1$ distinct items; $r \geq 1$ persons
give n_{i} items to person i
- here n_{1}, \ldots, n_{r} are given nonnegative integers
- with $n_{1}+\cdots+n_{r}=n$
- Ordering n items:
- Deal n_{i} to each person i, and then order

$$
\text { number of partitions }=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!} \quad \text { (multinomial coefficient) }
$$

Example: 52-card deck, dealt (fairly) to four players. Find \mathbf{P} (each player gets an ace)

- Outcomes are:
- number of outcomes:
- Constructing an outcome with one ace for each person:
- distribute the aces
- distribute the remaining 48 cards
- Answer: $\frac{4 \cdot 3 \cdot 2 \cdot \frac{48!}{12!12!12!12!}}{\frac{52!}{13!13!13!13!}}$

Example: 52-card deck, dealt (fairly) to four players. A smart solution Find \mathbf{P} (each player gets an ace)

Stack the deck, aces on top

Deal, one at a time, to available "slots"

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

