LECTURE 4: Counting

Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

Then : $\quad \mathrm{P}(A)=\frac{\text { number of elements of } A}{\text { number of elements of } \Omega}=\frac{k}{n}$

- Basic counting principle
- Applications
permutations combinations partitions
number of subsets binomial probabilities

Basic counting principle

4 shirts
3 ties
2 jackets

Number of possible attires?

- r stages
- n_{i} choices at stage i

Number of choices is: $n_{1}, n_{2} \cdots n_{r} \cdot$

Basic counting principle examples

- Number of license plates with 2 letters followed by 3 digits:

$$
26 \cdot 26 \cdot 10 \cdot 10 \cdot 10
$$

-... if repetition is prohibited: $26 \cdot 25 \cdot 10 \cdot 9 \cdot 8$

- Permutations: Number of ways of ordering n elements:

- Number of subsets of $\{1, \ldots, n\}$:

$$
n \cdot(n-1)(n-2) \cdots 1=n!
$$

$$
2 \cdot 2 \cdots 2=2^{n}
$$

$$
n=1 \quad\{1\} \quad 2^{\prime}=2
$$

$\} \phi$

Example

- Find the probability that:
six rolls of a (six-sided) die all give different numbers. $\quad A$
(Assume all outcomes equally likely.)
typical outcome $P(2,3,4,3,6,2)=1 / 66$
" Clement of A : $(2,3,4,1,6,5)=6$!

$$
P(A)=\frac{\# \text { in } A}{\# \text { Possible outcomes }}=\frac{6!}{6^{6}} .
$$

- Two ways of constructing an ordered sequence of k distinct items: $k=0,1, \ldots, n$
- Choose the k items one at a time
- Choose k items, then order them

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& \binom{n}{n}=1 \quad \frac{n!}{n!0!} \quad 0!=1 \quad \text { convention } \\
& \binom{n}{0}=\frac{n!}{0!n!}=1 \\
& \sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\cdots\binom{n}{n}=\# \text { all subsets }=2^{n}
\end{aligned}
$$

Binomial coefficient $\binom{n}{k} \longrightarrow$ Binomial probabilities

- $n \geq 1$ independent coin tosses; $\quad \mathbf{P}(H)=p \quad \mathbf{P}(k$ heads $)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- $\mathbf{P}(H T T H H H)=p(1-p)(1-p) p p p=p^{4}(1-p)^{2}$
- $\mathrm{P}($ particular sequence $)=p^{\# \text { heads }}(1-p)^{\# \text { tails }}$
- $P($ particular k-head sequence $)=P^{k}(1-p)^{n-k}$

$$
P(k \text { heads })=p^{k}(1-p)^{n-k} \cdot(\# k-\text { head sequences })
$$

$$
\binom{\eta}{k}
$$

A coin tossing problem

- Given that there were 3 heads in 10 tosses,

Assumptions: what is the probability that the first two tosses were heads?

- independence
- $\mathbf{P}(H)=p$
- event A : the first 2 tosses were heads
- event B: 3 out of 10 tosses were heads

$$
\mathbf{P}(k \text { heads })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- First solution:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P\left(H_{1} H_{2} \text { and one } H \text { intosscs } 3, \ldots, 10\right)}{P(B)} \\
& =\frac{P^{2} \cdot\binom{8}{1} P^{1} \cdot(1-P)^{7}}{\binom{10}{3} P^{3}(1-p)^{7}}=\frac{\binom{8}{1}}{\binom{10}{3}}=\frac{8}{\binom{10}{3}} .
\end{aligned}
$$

A coin tossing problem

- Given that there were 3 heads in 10 tosses,

Assumptions: what is the probability that the first two tosses were heads?

- independence
- $\mathbf{P}(H)=p$
- event A : the first 2 tosses were heads
- event B: 3 out of 10 tosses were heads

$$
\mathbf{P}(k \text { heads })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Second solution: Conditional probability law (on B) is uniform

Partitions

- $n \geq 1$ distinct items; $r \geq 1$ persons give n_{i} items to person i
- here n_{1}, \ldots, n_{r} are given nonnegative integers
- with $n_{1}+\cdots+n_{r}=n$
- Ordering n items: n!
- Deal n_{i} to each person i, and then order

$$
c n_{1}!n_{2}!\cdots n_{\Gamma}!=\eta_{0}!
$$

$$
r=2 \quad n_{1}=k \quad n_{2}=n-k
$$

number of partitions $=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!} \quad$ (multinomial coefficient)

Example: 52-card deck, dealt (fairly) to four players.
Find \mathbf{P} (each player gets an ace)

- Outcomes are: partition equally lately
- number of outcomes: $\frac{52!}{13!13!13!13!}$.
- Constructing an outcome with one ace for each person:
- distribute the aces $4 \cdot 3 \cdot 2 \cdot 1$
- distribute the remaining 48 cards $\frac{48!}{12!12!12!12!}$
- Answer: $\frac{4 \cdot 3 \cdot 2 \cdot \frac{48!}{12!12!12!12!}}{\frac{52!}{13!13!13!13!}}$

Example: 52-card deck, dealt (fairly) to four players.

A smart solution Find \mathbf{P} (each player gets an ace)

Stack the deck, aces on top

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

