LECTURE 9: Conditioning on an event; Multiple continuous r.v.'s

- Conditioning a r.v. on an event
- Conditional PDF
- Conditional expectation and the expected value rule
- Exponential PDF: memorylessness
- Total probability and expectation theorems
- Mixed distributions
- Jointly continuous r.v.'s and joint PDFs
- From the joints to the marginals
- Uniform joint PDF example
- The expected value rule and linearity of expectations
- The joint CDF


## Conditional PDF, given an event

$$
\begin{array}{cc}
p_{X}(x)=\mathbf{P}(X=x) & f_{X}(x) \cdot \delta \approx \mathbf{P}(x \leq X \leq x+\delta) \\
p_{X \mid A}(x)=\mathbf{P}(X=x \mid A) & f_{X \mid A}(x) \cdot \delta \approx \mathbf{P}(x \leq X \leq x+\delta \mid A) \\
\mathbf{P}(X \in B)=\sum_{x \in B} p_{X}(x) & \mathbf{P}(X \in B)=\int_{B} f_{X}(x) d x \\
\mathbf{P}(X \in B \mid A)=\sum_{x \in B} p_{X \mid A}(x) & \mathbf{P}(X \in B \mid A)=\int_{B} f_{X \mid A}(x) d x \\
& \\
\sum_{x} p_{X \mid A}(x)=1 & \int f_{X \mid A}(x) d x=1
\end{array}
$$

Conditional PDF of $X$, given that $X \in A$

$$
\mathbf{P}(x \leq X \leq x+\delta \mid X \in A) \approx f_{X \mid X \in A}(x) \cdot \delta
$$

$f_{X \mid X \in A}(x)= \begin{cases}0, & \text { if } x \notin A \\ \frac{f_{X}(x)}{\mathrm{P}(A)}, & \text { if } x \in A\end{cases}$

Conditional expectation of $X$, given an event

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{x} x p_{X}(x) & \mathbf{E}[X] & =\int x f_{X}(x) d x \\
\mathbf{E}[X \mid A] & =\sum_{x} x p_{X \mid A}(x) & \mathrm{E}[X \mid A] & =\int x f_{X \mid A}(x) d x
\end{aligned}
$$

Expected value rule:

$$
\mathrm{E}[g(X)]=\sum_{x} g(x) p_{X}(x)
$$

$$
\mathbf{E}[g(X)]=\int g(x) f_{X}(x) d x
$$

$$
\mathbf{E}[g(X) \mid A]=\sum_{x} g(x) p_{X \mid A}(x)
$$

$$
\mathrm{E}[g(X) \mid A]=\int g(x) f_{X \mid A}(x) d x
$$

## Example

$$
A: \quad \frac{a+b}{2} \leq X \leq b
$$




$$
\mathrm{E}\left[X^{2} \mid A\right]=
$$

## Memorylessness of the exponential PDF

- Do you prefer a used or a new "exponential" light bulb? Probabilistically identical!
- Bulb lifetime $T$ : exponential $(\lambda)$

$$
\mathbf{P}(T>x)=e^{-\lambda x}, \text { for } x \geq 0
$$

- we are told that $T>t$
- r.v. $X$ : remaining lifetime

$$
\mathbf{P}(X>x \mid T>t)=e^{-\lambda x}, \text { for } x \geq 0
$$

## Memorylessness of the exponential PDF

$$
f_{T}(x)=\lambda e^{-\lambda x}, \quad \text { for } x \geq 0
$$

$$
\mathbf{P}(0 \leq T \leq \delta)
$$

$$
\mathbf{P}(t \leq T \leq t+\delta \mid T>t)
$$

similar to an independent coin flip, every $\delta$ time steps, with P (success) $\approx \lambda \delta$

## Total probability and expectation theorems



$$
\begin{aligned}
\mathbf{P}(B) & =\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(B \mid A_{1}\right)+\cdots+\mathbf{P}\left(A_{n}\right) \mathbf{P}\left(B \mid A_{n}\right) \\
p_{X}(x) & =\mathbf{P}\left(A_{1}\right) p_{X \mid A_{1}}(x)+\cdots+\mathbf{P}\left(A_{n}\right) p_{X \mid A_{n}}(x)
\end{aligned}
$$

$$
f_{X}(x)=\mathbf{P}\left(A_{1}\right) f_{X \mid A_{1}}(x)+\cdots+\mathbf{P}\left(A_{n}\right) f_{X \mid A_{n}}(x)
$$

$$
\mathbf{E}[X]=\mathbf{P}\left(A_{1}\right) \mathrm{E}\left[X \mid A_{1}\right]+\cdots+\mathbf{P}\left(A_{n}\right) \mathrm{E}\left[X \mid A_{n}\right]
$$

## Example

- Bill goes to the supermarket shortly, with probability $1 / 3$, at a time uniformly distributed between 0 and 2 hours from now; or with probability $2 / 3$, later in the day at a time uniformly distributed between 6 and 8 hours from now


$$
\begin{aligned}
f_{X}(x) & =\mathbf{P}\left(A_{1}\right) f_{X \mid A_{1}}(x)+\cdots+\mathbf{P}\left(A_{n}\right) f_{X \mid A_{n}}(x) \\
\mathrm{E}[X] & =\mathbf{P}\left(A_{1}\right) \mathbf{E}\left[X \mid A_{1}\right]+\cdots+\mathbf{P}\left(A_{n}\right) \mathbf{E}\left[X \mid A_{n}\right]
\end{aligned}
$$

## Mixed distributions

$$
X=\left\{\begin{array}{lll}
\text { uniform on }[0,2], & \text { with probability } 1 / 2 & \text { Is } X \text { discrete? } \\
1, & \text { with probability } 1 / 2 & \text { Is } X \text { continuous? }
\end{array}\right.
$$

$\begin{array}{ll}Y \text { discrete } \\ Z \text { continuous }\end{array} \quad X=\left\{\begin{array}{ll}Y, & \text { with probability } p \\ Z, & \text { with probability } 1-p\end{array} \quad X\right.$ is mixed

$$
F_{X}(x)=
$$

$$
\mathbf{E}[X]=
$$

## Mixed distributions

$X= \begin{cases}\text { uniform on }[0,2], & \text { with probability } 1 / 2 \\ 1, & \text { with probability } 1 / 2\end{cases}$



$$
F_{X}(x)=\mathbf{P}\left(A_{1}\right) F_{X \mid A_{1}}(x)+\mathbf{P}\left(A_{2}\right) F_{X \mid A_{2}}(x)
$$



Jointly continuous r.v.'s and joint PDFs

$$
\begin{array}{ll}
p_{X}(x) & f_{X}(x) \\
p_{X, Y}(x, y) & f_{X, Y}(x, y)
\end{array}
$$

$$
p_{X, Y}(x, y)=\mathbf{P}(X=x \text { and } Y=y) \geq 0 \quad f_{X, Y}(x, y) \geq 0
$$

$$
\mathbf{P}((X, Y) \in B)=\sum_{(x, y) \in B} p_{X, Y}(x, y)
$$

$$
\mathbf{P}((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y
$$

$$
\sum_{x} \sum_{y} p_{X, Y}(x, y)=1
$$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1
$$

Definition: Two random variables are jointly continuous if they can be described by a joint PDF

## Visualizing a joint PDF



$$
\mathbf{P}((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y
$$

On joint PDFs

$$
\begin{aligned}
& \mathbf{P}((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y \\
& \mathbf{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

$$
\mathrm{P}(a \leq X \leq a+\delta, c \leq Y \leq c+\delta) \approx f_{X, Y}(a, c) \cdot \delta^{2}
$$

$f_{X, Y}(x, y)$ : probability per unit area

$$
\operatorname{area}(B)=0 \Rightarrow \mathbf{P}((X, Y) \in B)=0
$$

From the joint to the marginals

$$
\begin{array}{ll}
p_{X}(x)=\sum_{y} p_{X, Y}(x, y) & f_{X}(x)=\int f_{X, Y}(x, y) d y \\
p_{Y}(y)=\sum_{x} p_{X, Y}(x, y) & f_{Y}(y)=\int f_{X, Y}(x, y) d x
\end{array}
$$

## Uniform joint PDF on a set $S$

$$
\begin{aligned}
f_{X}(x) & =\int f_{X, Y}(x, y) d y \\
f_{Y}(y) & =\int f_{X, Y}(x, y) d x
\end{aligned}
$$

$$
f x, y(x, y)= \begin{cases}\frac{1}{\operatorname{ares} \text { of } S}, & \text { if }(x, y) \in S \\ 0, & \text { otherwise }\end{cases}
$$



More than two random variables

$$
p_{X, Y, Z}(x, y, z) \quad f_{X, Y, Z}(x, y, z)
$$

$$
\sum_{x} \sum_{y} \sum_{z} p_{X, Y, Z}(x, y, z)=1
$$

$$
p_{X}(x)=\sum_{y} \sum_{z} p_{X, Y, Z}(x, y, z)
$$

$$
p_{X, Y}(x, y)=\sum_{z} p_{X, Y, Z}(x, y, z)
$$

Functions of multiple random variables
$Z=g(X, Y)$

Expected value rule:

$$
\mathbf{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y) \quad \mathbf{E}[g(X, Y)]=\iint g(x, y) f_{X, Y}(x, y) d x d y
$$

Linearity of expectations

$$
\begin{aligned}
& \mathbf{E}[a X+b]=a \mathbf{E}[X]+b \\
& \mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]
\end{aligned}
$$

$$
\mathrm{E}\left[X_{1}+\cdots+X_{n}\right]=\mathrm{E}\left[X_{1}\right]+\cdots+\mathrm{E}\left[X_{n}\right]
$$

The joint CDF

$$
F_{X}(x)=\mathbf{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t \quad f_{X}(x)=\frac{d F_{X}}{d x}(x)
$$

$$
F_{X, Y}(x, y)=\mathbf{P}(X \leq x, Y \leq y)
$$

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y)
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

