LECTURE 12: Sums of independent random variables;

Covariance and correlation

- The PMF/PDF of $X+Y$ (X and Y independent)
- the discrete case
- the continuous case
- the mechanics
- the sum of independent normals
- Covariance and correlation
- definitions
- mathematical properties
- interpretation

The distribution of $X+Y$: the discrete case

- $Z=X+Y ; \quad X, Y$ independent, discrete

$$
p_{Z}(z)=\sum_{x} p_{X}(x) p_{Y}(z-x)
$$

known PMFs
$p_{Z}(3)=$

Discrete convolution mechanics

$p_{Z}(z)=\sum_{x} p_{X}(x) p_{Y}(z-x)$

- To find $p_{Z}(3)$:
- Flip (horizontally) the PMF of Y
- Put it underneath the PMF of X
- Right-shift the flipped PMF by 3
- Cross-multiply and add
- Repeat for other values of z

The distribution of $X+Y$: the continuous case

- $Z=X+Y ; \quad X, Y$ independent, continuous
known PDFs

$$
p_{Z}(z)=\sum_{x} p_{X}(x) p_{Y}(z-x)
$$

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

Conditional on $X=x$:

Joint PDF of Z and X :
From joint to the marginal: $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X, Z}(x, z) d x$

- Same mechanics as in discrete case (flip, shift, etc.)

The sum of independent normal r.v.'s

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

- $X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right), Y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right), \quad$ independent

$$
Z=X+Y
$$

$$
\begin{aligned}
f_{X}(x) & =\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{-\left(x-\mu_{x}\right)^{2} / 2 \sigma_{x}^{2}} \quad f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{y}} e^{-\left(y-\mu_{y}\right)^{2} / 2 \sigma_{y}^{2}} \\
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left\{-\frac{\left(x-\mu_{z}\right)^{2}}{2 \sigma_{x}^{2}}\right\} \frac{1}{\sqrt{2 \pi} \sigma_{v}} \exp \left\{-\frac{\left(x-z-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}\right\} d x \\
\text { (algebra) } & =\frac{1}{\sqrt{2 \pi\left(\sigma_{x}^{2}+\sigma_{v}^{2}\right)}} \exp \left\{-\frac{\left(z-\mu_{x}-\mu_{v}\right)^{2}}{2\left(\sigma_{x}^{2}+\sigma_{5}^{2}\right)}\right\}
\end{aligned}
$$

The sum of finitely many independent normals is normal

Covariance

Definition for general case:

- Zero-mean, discrete X and Y
- if independent: $\mathbf{E}[X Y]=$

- independent $\Rightarrow \operatorname{cov}(X, Y)=0$ (converse is not true)

$$
\begin{array}{ll}
\text { Covariance properties } \\
\operatorname{cov}(X, X)= \\
\operatorname{cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}[X]) \cdot(Y-\mathrm{E}[Y])] \\
\operatorname{cov}(a X+b, Y)= \\
\operatorname{cov}(X, Y+Z)= & \\
&
\end{array}
$$

The variance of a sum of random variables
$\operatorname{var}\left(X_{1}+X_{2}\right)=$

The variance of a sum of random variables $\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)$
$\operatorname{var}\left(X_{1}+\cdots+X_{n}\right)=$

$$
\operatorname{var}\left(X_{1}+\cdots+X_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{\{(i, j): i \neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

The Correlation coefficient

- Dimensionless version of covariance:

$$
-1 \leq \rho \leq 1
$$

$$
\begin{aligned}
\rho(X, Y) & =\mathrm{E}\left[\frac{(X-\mathrm{E}[X])}{\sigma_{X}} \cdot \frac{(Y-\mathrm{E}[Y])}{\sigma_{Y}}\right] \\
& =\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
\end{aligned}
$$

- Measure of the degree of "association" between X and Y
- Independent $\Rightarrow \rho=0$, "uncorrelated" (converse is not true)
- $\rho(X, X)=$
- $|\rho|=1 \Leftrightarrow(X-\mathbf{E}[X])=c(Y-\mathbf{E}[Y]) \quad$ (linearly related)
- $\operatorname{cov}(a X+b, Y)=a \cdot \operatorname{cov}(X, Y) \quad \Rightarrow \quad \rho(a X+b, Y)=$

Proof of key properties of the correlation coefficient

$$
\rho(X, Y)=\mathbf{E}\left[\frac{(X-\mathbf{E}[X])}{\sigma_{X}} \cdot \frac{(Y-\mathbf{E}[Y])}{\sigma_{Y}}\right]
$$

$$
-1 \leq \rho \leq 1
$$

- Assume, for simplicity, zero means and unit variances, so that $\rho(X, Y)=\mathbf{E}[X Y]$ $\mathrm{E}\left[(X-\rho Y)^{2}\right]=$

If $|\rho|=1$, then

Interpreting the correlation coefficient

- Association does not imply causation or influence

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

X : math aptitude
Y : musical ability

- Correlation often reflects underlying, common, hidden factor
- Assume, Z, V, W are independent

$$
X=Z+V \quad Y=Z+W
$$

Assume, for simplicity, that Z, V, W have zero means, unit variances

Correlations matter...

- A real-estate investment company invests $\$ 10 \mathrm{M}$ in each of 10 states. At each state i, the return on its investment is a random variable X_{i}, with mean 1 and standard deviation 1.3 (in millions).

$$
\operatorname{var}\left(X_{1}+\cdots+X_{10}\right)=\sum_{i=1}^{10} \operatorname{var}\left(X_{i}\right)+\sum_{\{(i, j): i \neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

- If the X_{i} are uncorrelated, then:

$$
\sigma\left(X_{1}+\cdots+X_{10}\right)=
$$

$$
\operatorname{var}\left(X_{1}+\cdots+X_{10}\right)=
$$

- If for $i \neq j, \rho\left(X_{i}, X_{j}\right)=0.9$:

$$
\sigma\left(X_{1}+\cdots+X_{10}\right)=
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

