LECTURE 13: Conditional expectation and variance revisited;

## Application: Sum of a random number of independent r.v.'s

- A more abstract version of the conditional expectation
- view it as a random variable
- the law of iterated expectations
- A more abstract version of the conditional variance
- view it as a random variable
- the law of total variance
- Sum of a random number of independent r.v.'s
- mean
- variance


## Conditional expectation as a random variable

- Function $h$
e.g., $h(x)=x^{2}$, for all $x$
- $g(y)=\mathbf{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$
(integral in continưous case)
- Random variable $X$; what is $h(X)$ ? $=x^{2}$
- $h(X)$ is the r.v. that takes the value $x^{2}$, if $X$ happens to take the value $x$
- $g(Y)$ : is the r.v. that takes the value $\mathrm{E}[X \mid Y=y]$, if $Y$ happens to take the value $y$
- Remarks:
- It is a function of $Y$

Definition: $\mathrm{E}[X \mid Y]=g(Y)$

- It is a random variable
- Has a distribution, mean, variance, etc.

The mean of $\mathrm{E}[X \mid Y]$ : Law of iterated expectations

$$
\begin{array}{rlrl}
\bullet g(y) & =\mathrm{E}[X \mid Y=y] & & \mathrm{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[X] \\
E[X \mid Y] & \triangleq g(Y) & \\
\mathrm{E}[\underbrace{\mathrm{E}[X \mid Y]}] & =E[g(Y)] & & \\
& =\sum_{y} g(y) P_{Y}(y) & \text { exp, value rule } \\
& =\sum_{Y} E[X \mid Y=y] P_{Y}(y) & \\
& =E[X] & \text { e total exp tam }
\end{array}
$$

Stick-breaking example

- Stick example: stick of length $\ell$ break at uniformly chosen point $Y$ break what is left at uniformly chosen point $X$

- $\mathrm{E}[x \mid Y=y]=y / 2$
- $\mathrm{E}[X \mid Y]=\quad \vdots / 2$


$$
\mathrm{E}[X]=E[E[X \mid Y]]=E[Y / 2]=\frac{1}{2} E[Y]=\frac{1}{2} \cdot \frac{l}{2}=\frac{l}{4}
$$

Forecast revisions

$$
\mathbf{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[X]
$$

- Suppose forecasts are made by calculating expected value, given any available information
- $X$ : February sales

- Forecast in the beginning of the year: $E[x]$
- End of January: will get new information, value $y$ of $Y$

Revised forecast: $E[X \mid Y=Y] \quad E[X \mid Y]$

- Law of iterated expectations:

$$
E[\text { revised forecast }]=E[x]=\text { original forecast }
$$

The conditional variance as a random variable

$$
\begin{aligned}
& \operatorname{var}(X)=\mathrm{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& \operatorname{var}(X \mid Y=\underset{=}{y})=\mathbf{E}\left[(X-\underline{\mathrm{E}[X \mid Y=y]})^{2} \mid Y=y\right]
\end{aligned}
$$

$\operatorname{var}(X \mid Y)$ is the r.v. that takes the value $\operatorname{var}(\bar{X} \mid Y=y)$, when $Y=y$

- Example: $X$ uniform on $[0, Y]$

$$
\begin{aligned}
\operatorname{var}(X \mid Y=y) & =y^{2} / 12 \\
\operatorname{var}(X \mid Y) & =Y^{2} / 12
\end{aligned}
$$

Law of total variance: $\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathbb{E}[X \mid Y])$

Derivation of the law of total variance

$$
\begin{aligned}
& \operatorname{var}(X)=\mathrm{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathrm{E}[X \mid Y]) \quad \cdot \operatorname{var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \\
& \operatorname{var}(X \mid Y=y)=E\left[X^{2} \mid Y=Y\right]-[E[X \mid Y=Y])^{2} \text { for all } y \\
& \operatorname{var}(X \mid Y)=E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2} \\
& E[\operatorname{var}(X \mid Y)]=E\left[X^{2}\right]-E\left[(E[X \mid Y])^{2}\right] \\
& +\operatorname{var}(E[X \mid Y])=E\left[(E[X \mid Y])^{2}\right]-(E[E[X \mid Y]])^{2} \\
& (E[X])^{2}
\end{aligned}
$$

A simple example

$$
\begin{aligned}
& \operatorname{var}(X)=\mathrm{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathrm{E}[X \mid Y])]=\frac{37}{48} \\
& =5 / 24+9 / 16 \\
& \operatorname{var}(X \mid Y)=\underbrace{1 / 2}_{1 / 2} \operatorname{var}(X \mid Y=1)=1 / 12 \\
& \operatorname{var}(X \mid Y=2)=2^{2} / 12=\frac{4}{12} \\
&
\end{aligned}
$$



$$
\mathrm{E}[X \mid Y]=\begin{aligned}
& 1 / 2 \\
& \mathrm{E}[X \mid Y=1]=\frac{1}{2} \\
& \mathrm{E}[X \mid Y=2]=2
\end{aligned}
$$

$$
\operatorname{var}(\mathbf{E}[X \mid Y])=\frac{1}{2}\left(\frac{1}{2}-\frac{5}{4}\right)^{2}
$$

$$
\mathrm{E}[\mathrm{E}[X \mid Y]]=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot 2=\frac{5}{4}=E[x]
$$

$$
+\frac{1}{2}\left(2-\frac{5}{4}\right)^{2}=\frac{9}{16}
$$

## Section means and variances

- Two sections of a class: $y=1$ (10 students); $y=2$ (20 students) $x_{i}$ : score of student $i$
- Experiment: pick a student at random (uniformly) random variables: $X$ and $Y$
- Data: $y=1: \frac{1}{10} \sum_{i=1}^{10} x_{i}=90 \quad y=2: \frac{1}{20} \sum_{i=11}^{30} x_{i}=60$
$\begin{array}{ll}\mathrm{E}[X]=\frac{1}{30} \sum_{i=1}^{30} x_{i}=\frac{1}{30}(90 \cdot 10+60 \cdot 20)=70 \quad 1 / 3 \\ \mathrm{E}[X \mid Y=1]=90 & \mathrm{E}[X \mid Y]=\frac{1 / 3}{2 / 3} 60\end{array}$
$\mathrm{E}[X \mid Y=2]=60$
- $\mathrm{E}[\mathrm{E}[X \mid Y]]=\frac{1}{3} \cdot 90+\frac{2}{3} \cdot 60=70$

Section means and variances (ctd.)

$$
\mathrm{E}[X \mid Y]=\left\{\begin{array}{lll}
90, & \text { w.p. } 1 / 3 & \mathrm{E}[\mathrm{E}[X \mid Y]]=70=\mathrm{E}[X] \\
60, & \text { w.p. } 2 / 3 & \operatorname{var}(\mathrm{E}[X \mid Y])=\frac{1}{3}(90-70)^{2}+\frac{2}{3}(60-70)^{2}=200
\end{array}\right.
$$

- More data: $\quad \frac{1}{10} \sum_{i=1}^{10}\left(x_{i}-90\right)^{2}=10 \quad \frac{1}{20} \sum_{i=11}^{30}\left(x_{i}-60\right)^{2}=20$

$$
\begin{array}{ll}
\operatorname{var}(X \mid Y=1)=10 & \operatorname{var}(X \mid Y)=\frac{1 / 3}{2 / 3} 10 \\
\operatorname{var}(X \mid Y=2)=20 & \mathrm{E}[\operatorname{var}(X \mid Y)]=\frac{1}{3} \cdot 10+\frac{2}{3} \cdot 20=\frac{50}{3} \\
\operatorname{var}(X)=\mathrm{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathrm{E}[X \mid Y])=50 / 3+200
\end{array}
$$

$$
\operatorname{var}\left(X_{0}\right)=\text { (average variability within sections) }+ \text { (variability between sections) }
$$

Sum of a random number of independent r.v.'s

$$
\mathbf{E}[Y]=\mathbf{E}[N] \cdot \mathbf{E}[X]
$$

- $N$ : number of stores visited
( $N$ is a nonnegative integer r.v.)
- Let $Y=X_{1}+\cdots+X_{N}$
- $X_{i}$ : money spent in store $i$
- $X_{i}$ independent, identically distributed
- independent of $N$

$$
\begin{aligned}
\mathrm{E}[Y \mid N=n]=E\left[X_{1}+\ldots+X_{n} \mid N=n\right] & =E\left[X_{1}+\cdots+X_{n} \mid N=n\right] \\
& =E\left[X_{1}+\cdots+X_{n}\right]=n E[X]
\end{aligned}
$$

- Total expectation theorem:

$$
\mathrm{E}[Y]=\sum_{n} p_{N}(n) \mathrm{E}[Y \mid N=n]=\sum_{n} P_{N}(n) n E[X]=E[N] E[X]
$$

- Law of iterated expectations:

$$
\mathbf{E}[Y]=\mathbf{E}[\mathrm{E}[Y \mid N]]=E[N E[x]]=E[N] E[x]
$$

Variance of sum of a random number of independent r.v.'s

$$
\begin{aligned}
& Y=X_{1}+\cdots+X_{N} \\
& \text { - } \quad \operatorname{var}(Y)=\mathrm{E}[\operatorname{var}(Y \mid N)]+\operatorname{var}(\mathrm{E}[Y \mid N]) \\
& \operatorname{var}(Y)=\mathrm{E}[N] \operatorname{var}(X)+(\mathrm{E}[X])^{2} \operatorname{var}(N) \\
& \text { - } \mathrm{E}[Y \mid N]=N \mathrm{E}[X] \\
& \text { - } \operatorname{var}(E[Y \mid N])=\operatorname{var}(N E[x])=(E[x])^{2} \operatorname{uar}(N) \\
& \cdots \operatorname{var}(Y \mid N=n)=\operatorname{van}\left(X_{1}+\ldots+x_{n} \mid N=n\right)=\operatorname{var}\left(X_{1}+\ldots+x_{n}\right) \\
& \sum_{\operatorname{var}(Y \mid N)}=\operatorname{Nuar}(x)=n \operatorname{uar}(x) \\
& \text { - } \mathrm{E}[\operatorname{var}(Y \mid N)]=E[N \operatorname{var}(x)]=E[N] \operatorname{var}(x)
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

## Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

