## MITOCW | MITRES6_012S18_L03-04_300k

Let us now discuss an interesting fact about independence that should enhance our understanding.
Suppose that events A and B are independent.

Intuitively, if I tell you that A occurred, this does not change your beliefs as to the likelihood that B will occur.

But in that case, this should not change your beliefs as to the likelihood that B will not occur.

So A should be independent of B complement.

In other words, the occurrence of $A$ tells you nothing about $B$, and therefore tells you nothing about $B$ complement either.

This was an intuitive argument that if $A$ and $B$ are independent, then $A$ and $B$ complement are also independent.

But let us now verify this intuition through a formal proof.

The formal proof goes as follows.

We have the two events, $A$ and $B$. And event $A$ can be broken down into two pieces.

One piece is the intersection of $A$ with $B$. So that's the first piece.

And the second piece is the part of $A$ which is outside $B$.

And that piece is $A$ intersection with the complement of $B$. So these are the two pieces that together comprise event $A$.

Now, these two pieces are disjoint from each other.

And therefore, by the additivity axiom, the probability of $A$ is equal to the probability of $A$ intersection $B$ plus the probability of $A$ intersection with $B$ complement.

Using independence, the first term becomes probability of A times probability of B. And we leave the second term as is.

Now let us move this term to the other side.

And we obtain that the probability of $A$ intersection with $B$ complement is the probability of $A$ minus the probability of $A$ times the probability of $B$. We factor out the term probability of $A$, and we are left with 1 minus probability of $B$. And then we recognize that 1 minus the probability of $B$ is the same as the probability of $B$ complement.

So we proved that the probability of $A$ and $B$ complement occurring together is the product of their individual probabilities.

And that's exactly the definition of $A$ being independent from $B$ complement.

And this concludes the formal proof.

