MITOCW | MITRES6_012S18_L11-02_300k

As a warm-up towards finding the distribution of the function of random variables, let us start by considering the discrete case.

So let X be a discrete random variable and let Y be defined as a given function of X. We know the PMF of X and wish to find the PMF of Y. Here's a simple example.

The random variable X takes the values $2,3,4$, and 5 with the probabilities given in the figure, and Y is the function indicated here.

Then, for example, the probability that Y takes a value of 4.

This is also the value of the PMF of Y evaluated at 4.

This is simply the sum of the probabilities of the possible values of X that give rise to a value of Y that is equal to 4.

Therefore, this expression is equal to the probability that X equals to 4 plus the probability that X is equal to 5 .

Or, in PMF notation, we can write it in this manner.

And in this numerical example, it would be 0.3 plus 0.4 .

More generally, for any given value of little y, the probability that the random variable capital Y takes this particular value is the sum of the probabilities of the little x that result in that particular value.

So the probability that the random variable capital Y, which is the same as g of X, takes on a specific value is the sum of the probabilities of all possible values of little x where we only consider those values of little x that give rise to the specific value, little y, that you're interested.

Let us now look into the special case where we have a linear function of a discrete random variable.

Suppose that X is described by the PMF shown in this diagram, and let us consider the random variable Z , which is defined as 2 times X . We would like to plot the PMF of Z .

First, let us note the values that Z can take.

When X is equal to minus $1, \mathrm{Z}$ is going to be equal to minus 2 .

When X is equal to $1, Z$ is going to be equal to 2 .

And when X is equal to $2, Z$ is going to be equal to 4 .

This event that X is equal to minus 1 happens with probability $2 / 6$, and when that event happens, Z will take a value of minus 2 .

So this event happens with probability $2 / 6$.

With probability $1 / 6, X$ takes a value of 1 so that Z takes a value of 2 .

And this happens with probability $1 / 6$.

6 And finally, this last event here happens with probability $3 / 6$.

We have thus found the PMF of Z. Notice that it has the same shape as the PMF of X, except that it is stretched or scaled horizontally by a factor of 2 .

Let us now consider the random variable Y , defined as 2 X plus 3 , or what is the same as Z plus 3 .

With probability $2 / 6, Z$ is equal to minus 2 .

And in that case, Y is going to be equal to plus 1.

And this event happens with probability $2 / 6$.

With probability $1 / 6, Z$ takes a value of 2 so that Y it takes a value of 5 .

And finally, with probability $3 / 6, Z$ takes a value of 4 so that Y it takes a value of 7 .

What we see here is that the PMF of Y has exactly the same shape as the PMF of Z, except that it is shifted to the right by 3 .

To summarize, in order to find the PMF of a linear function such as 2 X plus 3 , what we do is that we first stretch the PMF of X by a factor of 2 and then shift it horizontally by 3 .

We can also describe the PMF of Y through a formula.

For any given value of little y, the PMF is going to be equal to the probability that our random variable Y takes on the specific value little y.

Then we recall that Y has been defined in our example to be equal to 2 X plus 3 , so we're looking at the probability of this event.

But this is the same as the event that X takes a value equal to y minus 3 divided by 2 .

And in PMF notation, we can write it in this form.

So what this is saying is that the probability that Y takes on a specific value is the same as the probability that X takes on some other specific value.

And that value here is that value of X that would give rise to this particular value little y.

Now, we can generalize the calculation that we just did.

And more generally, if we have a linear function of a discrete random variable X , the PMF of the random variable Y is given by this formula in terms of the PMF of the random variable X . The derivation is the same.

We use b instead the specific number 3 , and we have a general constant a instead of the 2 that we had in this example.

And this formula describes exactly what we did graphically in our previous example.

This factor of a here serves to stretch the PMF by a factor of a, and this term b here serves to shift the PMF by b.

