LECTURE 16: Least mean squares (LMS) estimation

- minimize (conditional) mean squared error $\mathbf{E}\left[(\Theta-\hat{\theta})^{2} \mid X=x\right]$
- solution: $\hat{\theta}=\mathrm{E}[\Theta \mid X=x]$
- general estimation method
- Mathematical properties
- Example

LMS estimation in the absence of observations

- unknown Θ; prior $p_{\Theta}(\theta)$
- interested in a point estimate $\widehat{\theta}$
- no observations available
- MAP rule: $a^{m y} \hat{\theta} \in[4,10]$

- (Conditional) expectation: $\hat{\theta}=7$
- Criterion: Mean Squared Error (MSE): $\mathbf{E}\left[(\Theta-\hat{\theta})^{2}\right]$.
minimize mean squared error

LMS estimation in the absence of observations

- Least mean squares formulation:

$$
\begin{aligned}
& \text { minimize mean squared error (MSE), } \mathrm{E}\left[(\Theta-\hat{\theta})^{2}\right]: \quad \hat{\theta}=\mathrm{E}[\Theta] \text {. } \\
& E\left[\theta^{2}\right]-2 E[\theta] \hat{\theta}+\hat{\theta}^{2} \quad \frac{d}{d \hat{\theta}}=0:-2 E[\theta]+2 \hat{\theta}=0 \\
& \hat{\theta}=E[\theta] \\
& \operatorname{Var}(\theta-\hat{\theta})+(E[\theta-\hat{\theta}])^{2} \\
& \operatorname{Var}(\theta) \\
& \text { when } \hat{\theta}=E[\theta]
\end{aligned}
$$

- Optimal mean squared error: $\mathbf{E}\left[(\Theta-\mathbf{E}[\Theta])^{2}\right]=\operatorname{var}(\Theta)$

LMS estimation of Θ based on X

- unknown Θ; prior $p_{\Theta}(\theta)$
- interested in a point estimate $\hat{\theta}$
- observation X; model $p_{X \mid \Theta}(x \mid \theta)$
- observe that $X=x$

$$
\text { minimize mean squared error }(\mathrm{MSE}), \quad \mathrm{E}\left[(\Theta-\widehat{\theta})^{2}\right]: \quad \hat{\theta}=\mathrm{E}[\Theta]
$$

minimize conditional mean squared error, $\mathrm{E}\left[(\Theta-\hat{\theta})^{2} \mid X=x\right]: \widehat{\theta}=\mathrm{E}[\Theta \mid X=x]$

- LMS estimate: $\hat{\theta}=\mathrm{E}[\Theta \mid X=x]$
estimator: $\widehat{\Theta}=\mathrm{E}[\Theta \mid \underset{\bullet}{X}]$

LMS estimation of Θ based on X

- $\mathrm{E}[\Theta]$ minimizes $\mathrm{E}\left[(\Theta-\widehat{\theta})^{2}\right]$

$E\left[(\theta-E[\theta])^{2}\right] \leq E\left[(\theta-c)^{2}\right]$, for all c
- $\mathrm{E}[\theta \mid X=x]$ minimizes $\mathrm{E}\left[(\theta-\hat{\theta})^{2} \mid X=x\right]$

$$
\begin{aligned}
& E\left[(\theta-E[\theta \mid x=x])^{2} \mid x=x\right] \leq E\left[(\theta-g(x))^{2} \mid x=x\right] \text { for all } \\
& E\left[(\theta-E[\theta \mid x])^{2} \mid x\right] \leq E\left[(\theta-g(x))^{2} \mid x\right] \\
& E\left[(\theta \sim E[\theta \mid x])^{2}\right] \leq E\left[(\theta-g(x))^{2}\right]
\end{aligned}
$$

$\widehat{\Theta}_{\text {LM }}=\mathrm{E}\left[\Theta \mid X_{0}\right]$ minimizes $\mathrm{E}\left[(\Theta-g(X))^{2}\right]$, over all estimators $\widehat{\Theta}=g(X)$

LMS performance evaluation

- LMS estimate: $\hat{\theta}=\mathrm{E}[\Theta \mid X=x]$
estimator: $\widehat{\Theta}=\mathrm{E}[\Theta \mid X]$
- Expected performance, once we have a measurement:

$$
\text { MSE }=\mathrm{E}\left[(\Theta-\mathbf{E}[\Theta \mid X=x])^{2} \mid X=x\right]=\underline{\operatorname{var}(\Theta \mid X=x)}
$$

- Expected performance of the design:

$$
\text { MSE }=\mathrm{E}\left[(\Theta-\mathrm{E}[\Theta \mid X])^{2}\right]=\mathrm{E}[\underline{\operatorname{var}(\Theta \mid X)}]
$$

LMS estimation of Θ based on X

- LMS relevant to estimation (not hypothesis testing)

- Same as MAP if the posterior is unimodal and symmetric around the mean
- e.g., when posterior is normal (the case in "linear-normal" models)

Example

$$
x=\theta+U \quad U \sim \text { un. } f(-1,1)
$$

Conditional mean squared error

- $\mathrm{E}\left[(\Theta-\mathrm{E}[\Theta \mid X=x])^{2} \mid X=x\right]$

- same as $\operatorname{Var}(\Theta \mid X=x)$: variance of

$$
\operatorname{Var}(\Theta \mid X=x)
$$

$E[\operatorname{Var}(\theta \mid x)]=\int f_{x}(x) \operatorname{Van}(\theta \mid x=x) d x$
$1 / 3$

LMS estimation with multiple observations or unknowns

- unknown Θ; prior $p_{\Theta}(\theta)$
- interested in a point estimate $\hat{\theta}$
- observations $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$; model $p_{X \mid \Theta}(x \mid \theta)$
- observe that $X=x$
- new universe: condition on $X=x$
- LMS estimate: $\mathrm{E}\left[\Theta \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]$
- If Θ is a vector, apply to each component separately

$$
\theta=\left(\theta_{1}, \ldots, \theta_{m}\right) \quad \hat{\theta}_{j}=E\left[\theta_{j} \mid x_{1}=x_{1}, \ldots, x_{n}=x_{n}\right]
$$

Some challenges in LMS estimation

$$
\begin{aligned}
& f_{\Theta \mid X}(\theta \mid x)=\frac{f_{\Theta}(\theta) f_{X \mid \Theta}(x \mid \theta)}{f_{X}(x)} \\
& f_{X}(x)=\int f_{\Theta}\left(\theta^{\prime}\right) f_{X \mid \Theta}\left(x \mid \theta^{\prime}\right) d \theta^{\prime}
\end{aligned}
$$

- Full correct model, $f_{X \mid \Theta}(x \mid \theta)$, may not be available .
- Can be hard to compute/implement/analyze

$$
E\left[\theta_{j} \mid x=x\right]=\iiint \theta_{j} f_{\theta \mid x}(\theta \mid x) d \theta_{1} \ldots d \theta_{m}
$$

Properties of the estimation error in LMS estimation

$$
\begin{aligned}
& \text { - Estimator: } \widehat{\Theta}=E[\Theta \mid X] \\
& \text { - Error: } \underline{\underline{\theta}=\widehat{\theta}-\Theta} \\
& E[\hat{\theta}]=E[\theta] \\
& E[\tilde{\theta}]=0 \\
& \mathrm{E}[\widetilde{\Theta} \mid X=x]=0 \\
& E[\hat{\theta}-\theta \mid X=x]=\hat{\theta}-E[\theta \mid X=x]=0 \\
& \operatorname{cov}(\widetilde{\Theta}, \widehat{\Theta})=0 \\
& E[\tilde{\theta} \hat{\theta}] \\
& E[\tilde{\theta} \hat{\Theta} \mid X=x]=\hat{\theta} E[\tilde{\theta} \mid X=x]=0 \\
& \operatorname{var}(\Theta)=\operatorname{var}(\widehat{\Theta})+\operatorname{var}(\widetilde{\Theta}) \\
& \theta=\hat{\theta}-\tilde{\theta}
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

