LECTURE 18: Inequalities, convergence, and the Weak Law of Large Numbers

- Inequalities
 - bound $P(X \ge a)$ based on limited information about a distribution
 - Markov inequality (based on the mean)
 - Chebyshev inequality (based on the mean and variance)
- WLLN: X, X_1, \ldots, X_n i.i.d.

$$\frac{X_1 + \dots + X_n}{n} \longrightarrow \mathbf{E}[X]$$

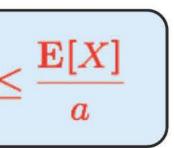
- application to polling
- Precise defn. of convergence
- convergence "in probability"

1

The Markov inequality

- Use a bit of information about a distribution to learn something about probabilities of "extreme events"
- "If $X \ge 0$ and $\mathbf{E}[X]$ is small, then X is unlikely to be very large"

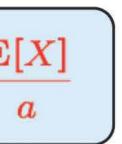
Markov inequality: If $X \ge 0$ and a > 0, then $P(X \ge a) \le \frac{E[X]}{a}$



Markov inequality: If $X \ge 0$ and a > 0, then $P(X \ge a) \le \frac{E[X]}{a}$

• **Example:** X is Exponential $(\lambda = 1)$: $P(X \ge a) \le d$

• Example: X is Uniform[-4, 4]: $P(X \ge 3) \le$

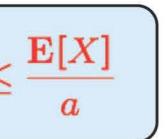


The Chebyshev inequality

- Random variable X, with finite mean μ and variance σ^2 .
- "If the variance is small, then X is unlikely to be too far from the mean"

Chebyshev inequality: $P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$

Markov inequality: If $X \ge 0$ and a > 0, then $P(X \ge a) \le \frac{E[X]}{2}$



The Chebyshev inequality

Chebyshev inequality:
$$P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$

$$\mathbf{P} ig(|X-\mu| \ge k\sigma ig) \le$$

• Example: X is Exponential
$$(\lambda = 1)$$
: $P(X \ge a) \le \frac{1}{a}$ (Mar

rkov)

The Weak Law of Large Numbers (WLLN)

• X_1, X_2, \ldots i.i.d.; finite mean μ and variance σ^2

Sample mean:
$$M_n = \frac{X_1 + \dots + X_n}{n}$$

• $\mathbf{E}[M_n] =$

• $Var(M_n) =$

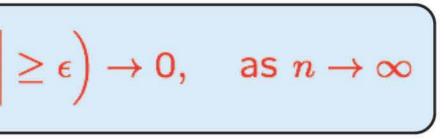
 $\mathbf{P}(|M_n - \mu| \ge \epsilon) \le$

WLLN: For $\epsilon > 0$, $\mathbf{P}(|M_n - \mu| \ge \epsilon) = \mathbf{P}(|\frac{X_1 + \dots + X_n}{n} - \epsilon)$

$$\mu \Big| \geq \epsilon \Big) o 0, \quad \text{as } n \to \infty$$

WLLN: For
$$\epsilon > 0$$
, $\mathbf{P}(|M_n - \mu| \ge \epsilon) = \mathbf{P}(\left|\frac{X_1 + \dots + X_n}{n} - \mu\right|$

- One experiment •
 - many measurements $X_i = \mu + W_i$
 - W_i : measurement noise; $\mathbf{E}[W_i] = 0$; independent W_i
 - sample mean M_n is unlikely to be far off from true mean μ
- Many independent repetitions of the same experiment
- event A, with $p = \mathbf{P}(A)$
- $-X_i$: indicator of event A
- the sample mean M_n is the **empirical frequency** of event A
- empirical frequency is unlikely to be far of from true probability p



7

The pollster's problem

- p: fraction of population that will vote "yes" in a referendum
- $X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases}$ • *i*th (randomly selected) person polled:
- $M_n = (X_1 + \dots + X_n)/n$: fraction of "yes" in our sample
- Would like "small error," e.g.: $|M_n p| < 0.01$
- $\mathbf{P}(|M_{10,000} p| \ge 0.01) \le$

• Try n = 10,000

WLLN: For any
$$\epsilon > 0$$
, $\mathbf{P}(|M_n - \mu| \ge \epsilon) \to 0$, as $n \to \infty$

- Would like to say that " M_n converges to μ "
- Need to define the word "converges"
- Sequence of random variables Y_n ; not necessarily independent

Definition: A sequence Y_n converges in probability to a number *a* if: for any $\epsilon > 0$, $\lim_{n \to \infty} \mathbf{P}(|Y_n - a| \ge \epsilon) = 0$

Understanding convergence "in probability"

 Ordinary convergence 	 Convergence i
- Sequence a_n ; number a	– Sequence 3
$a_n ightarrow a$	$Y_n \rightarrow a$
" a_n eventually gets and stays (arbitrarily) close to a "	• for any $\epsilon > 0$,

• For every $\epsilon > 0$, there exists n_0 , such that for every $n \ge n_0$, eventually gets concentrated we have $|a_n - a| \leq \epsilon$ (arbitrarily) close to a''

in probability

number a Y_n ;

$\mathbf{P}(|Y_n-a|\geq\epsilon) ightarrow 0$

"(almost all) of the PMF/PDF of Y_n 10

Some properties

- Suppose that $X_n \rightarrow a$, $Y_n \rightarrow b$, in probability
- If g is continuous, then $g(X_n) \rightarrow g(a)$
- $X_n + Y_n \to a + b$

• But: $E[X_n]$ need not converge to a

Convergence in probability examples

 $\mathbf{E}[Y_n] =$

convergence in probability does not imply convergence of expectations

Convergence in probability examples

• X_i: i.i.d., uniform on [0, 1]

•
$$Y_n = \min\{X_1, \ldots, X_n\}$$

$$\mathbf{P}(|Y_n - 0| \ge \epsilon)$$

Related topics

- Better bounds/approximations on tail probabilities
 - Markov and Chebyshev inequalities
 - Chernoff bound
 - Central limit theorem
- Different types of convergence •
 - Convergence in probability
 - Convergence "with probability 1"
 - Strong law of large numbers
 - Convergence of a sequence of distributions (CDFs) to a limiting CDF

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.