LECTURE 18: Inequalities, convergence, and the Weak Law of Large Numbers

- Inequalities
- bound $\mathrm{P}(X \geq a)$ based on limited information about a distribution
- Markov inequality (based on the mean)
- Chebyshev inequality (based on the mean and variance)
- WLLN: X, X_{1}, \ldots, X_{n} i.i.d.

$$
\frac{X_{1}+\cdots+X_{n}}{n} \longrightarrow \mathbf{E}[X]
$$

- application to polling
- Precise defn. of convergence
- convergence "in probability"

The Markov inequality

- Use a bit of information about a distribution to learn something about probabilities of "extreme events"
- "If $X \geq 0$ and $\mathrm{E}[X]$ is small, then X is unlikely to be very large"

Markov inequality: If $X \geq 0$ and $a>0$, then $\mathrm{P}(X \geq a) \leq \frac{\mathrm{E}[X]}{a}$.

$$
Y=\begin{aligned}
& 0, \text { if } x<a \\
& a, \text { if } x \geqslant a
\end{aligned} \quad a P(x \geqslant a)=E[Y] \leqslant E[X]
$$

The Markov inequality

Markov inequality: If $X \geq 0$ and $a>0$, then $\mathrm{P}(X \geq a) \leq \frac{\mathrm{E}[X]}{a}$

- Example: X is Exponential $(\lambda=1): \mathbf{P}(X \geq a) \leq \frac{1}{a}$

- Example: x is Uniform $[-4,4]: \mathbf{P}(x \geq 3) \leq \rho(|x| \geq 3) \leq \frac{E[|x|]}{3}=\frac{2}{3}$

$$
=\frac{1}{2} P(|x| \geqslant 3) \leq \frac{1}{3}
$$

The Chebyshev inequality

- Random variable X, with finite mean μ and variance σ^{2}
- "If the variance is small, then X is unlikely to be too far from the mean"

Chebyshev inequality: $\mathbf{P}(|X-\mu| \geq c) \leq \frac{\sigma^{2}}{c^{2}}$

Markov inequality: If $X \geq 0$ and $a>0$, then $\mathrm{P}(X \geq a) \leq \frac{\mathrm{E}[X]}{a}$

$$
P(|x-\mu| \geqslant c)=P(\underbrace{(x-\mu)^{2}} \geqslant c^{2}) \leq \frac{E\left[(x-\mu)^{2}\right]}{c^{2}}=\frac{\sigma^{2}}{c^{2}}
$$

The Chebyshev inequality

Chebyshev inequality: $\mathbf{P}(|X-\mu| \geq c) \leq \frac{\sigma^{2}}{c^{2}}$

$$
\mathbf{P}(|X-\mu| \geq k \sigma) \leq \frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}} \quad k=3 \quad \leq \frac{1}{9}
$$

- Example: X is Exponential $(\lambda=1): \mathbf{P}(X \geq a) \leq \frac{1}{a} \quad$ (Markov)

$$
P(x \geqslant a)=P(x-1 \geq a-1) \leq P(|x-1| \geqslant a-1) \leq \frac{1}{(a-1)^{2}} \sim \frac{1}{a^{2}}
$$

The Weak Law of Large Numbers (WLLN)

- X_{1}, X_{2}, \ldots i.i.d.; finite mean μ and variance σ^{2}

Sample mean: $\quad M_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$

$$
\mu=E\left[x_{i}\right]
$$

- $\mathrm{E}\left[M_{n}\right]=\frac{E\left[x_{1}+\ldots+x_{n}\right]}{n}=\frac{n \mu}{n}=\mu$
- $\operatorname{Var}\left(M_{n}\right)=\frac{\operatorname{Van}\left(X_{1}+\cdots+X_{m}\right)}{n^{2}}=\frac{n^{2}}{n^{2}}=\frac{\sigma^{2}}{n}$

$$
\mathbf{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right) \leq \frac{\operatorname{var}^{2}\left(M_{n}\right)}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \xrightarrow[n \rightarrow \infty]{ } O \quad(\text { fixeol } \varepsilon>0)
$$

WLLN: For $\epsilon>0, \quad \mathbf{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right)=\mathbf{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0, \quad$ as $n \rightarrow \infty$

Interpreting the WLLN

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right) / n
$$

WLLN: For $\epsilon>0, \quad \mathbf{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right)=\mathbf{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0, \quad$ as $n \rightarrow \infty$

- One experiment
- many measurements $X_{i}=\mu+W_{i}$
$-W_{i}$: measurement noise; $\quad \mathbf{E}\left[W_{i}\right]=0 ; \quad$ independent W_{i}
- sample mean M_{n} is unlikely to be far off from true mean μ
- Many independent repetitions of the same experiment
- event A, with $p=\mathbf{P}(A)$
$-X_{i}$: indicator of event A

$$
x_{i}=1 \text {, if } A \text { occurs }
$$

$E\left[x_{i}\right]=p$

- the sample mean M_{n} is the empirical frequency of event A

The pollster's problem

- p : fraction of population that will vote "yes" in a referendum
- i th (randomly selected) person polled: uniformly, wo dependently

$$
\begin{aligned}
& X_{i}= \begin{cases}1, & \text { if yes, } \\
0, & \text { if no. }\end{cases} \\
& \text { in our sample }
\end{aligned} \frac{p\left(x_{i}\right]=p}{0} 1
$$

- Would like "small error," e.g.: $\left|M_{n}-p\right|<0.01$
- Try $n=10,000$
- $\mathbf{P}\left(\left|M_{10,000}-p\right| \geq 0.01\right) \leq \frac{\sigma^{2}}{n \varepsilon^{2}}=\frac{p(1-p)}{10^{4} \cdot 10^{-4}} \leq \frac{1}{4} \backsim$ want $\frac{5 \%}{\frac{1}{5}}$

$$
\frac{1 / 4}{n 10^{-4}} \leq \frac{5}{10^{2}} \Leftrightarrow n \geq \frac{10^{6}}{20}=50,000 \text { will suffice }
$$

Convergence "in probability"

WLLN: For any $\epsilon>0, \quad \mathbf{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right) \rightarrow 0, \quad$ as $n \rightarrow \infty$

- Would like to say that " M_{n} converges to μ "

- Need to define the word "converges"
- Sequence of random variables Y_{n}; not necessarily independent

Definition: A sequence Y_{n} converges in probability to a number $\underset{\underline{a}}{\underline{a}}$ if:

$$
\text { for any } \epsilon>0, \quad \lim _{n \rightarrow \infty} \mathbf{P}\left(\left|Y_{n}-a\right| \geq \epsilon\right)=0
$$

Understanding convergence "in probability"

- Ordinary convergence
- Sequence a_{n}; number a

$$
a_{n} \rightarrow a
$$

" a_{n} eventually gets and stays (arbitrarily) close to $a^{\prime \prime}$

- For every $\epsilon>0$, there exists n_{0}, such that for every $n \geq n_{0}$, we have $\left|a_{n}-a\right| \leq \epsilon$
- Convergence in probability
- Sequence Y_{n}; number a

$$
Y_{n} \rightarrow a
$$

- for any $\epsilon>0, \mathbf{P}\left(\left|Y_{n}-a\right| \geq \epsilon\right) \rightarrow 0$

"(almost all) of the PMF/PDF of Y_{n} eventually gets concentrated (arbitrarily) close to $a_{0}^{\prime \prime}$

Some properties

- Suppose that $X_{n} \rightarrow a, Y_{n} \rightarrow b$, in probability
- If g is continuous, then $g\left(X_{n}\right) \rightarrow g(a) \quad X_{n}^{2} \rightarrow a^{2}$
- $X_{n}+Y_{n} \rightarrow a+b$
- But: $\mathbf{E}\left[X_{n}\right]$ need not converge to a

Convergence in probability examples

$$
\xi>0 \quad P\left(\left|Y_{n}-0\right| \geqslant \varepsilon\right)=1 / n \underset{m \rightarrow \infty}{\longrightarrow} 0
$$

$$
\mathrm{E}\left[Y_{n}\right]=n^{2} \cdot \frac{1}{n}=n \underset{n \rightarrow \infty}{\rightarrow \infty}
$$

- convergence in probability does not imply convergence of expectations

Convergence in probability examples

- X_{i} : i.i.d., uniform on $[0,1]$
- $Y_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$

$$
Y_{n+1} \leq Y_{n}
$$

$$
\begin{aligned}
& \mathbf{P}\left(\left|Y_{n}-0\right| \geq \epsilon\right)=P\left(Y_{n} \geqslant \varepsilon\right) . \\
& \varepsilon>0=P\left(X_{1} \geqslant \varepsilon, \ldots, X_{n} \geqslant \varepsilon\right) \\
& \varepsilon>1 \\
& \varepsilon \leqslant 1=P\left(X_{1} \geqslant \varepsilon\right) \ldots P\left(X_{n} \geqslant \varepsilon\right) \\
&=(1-\varepsilon)^{n} \xrightarrow[n \rightarrow \infty]{ } \xrightarrow{i \cdot p} 0
\end{aligned}
$$

Related topics

- Better bounds/approximations on tail probabilities
- Markov and Chebyshev inequalities
- Chernoff bound $P\left(\left|M_{\mu}-\mu\right| \geqslant a\right) \leqslant e^{-n h(a)}$
- Central limit theorem " $M_{n} \sim N_{0}\left(\mu, \sigma^{2} / m\right)^{\prime}$
- Different types of convergence
- Convergence in probability
- Convergence "with probability 1" $P\left(\left\{w: Y_{n}(w) \rightarrow Y(w)\right\}\right)=1$
- Strong law of large numbers $M_{n} \xrightarrow[m \rightarrow \infty]{\omega p 1} \mu$
- Convergence of a sequence of distributions (CDFs) to a limiting CDF

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

