LECTURE 18: Inequalities, convergence, and the Weak Law of Large Numbers

- Inequalities
 - bound $P(X \ge a)$ based on limited information about a distribution
 - Markov inequality (based on the mean)
 - Chebyshev inequality (based on the mean and variance)
- WLLN: X, X_1, \ldots, X_n i.i.d.

$$\frac{X_1 + \dots + X_n}{n} \longrightarrow \mathbf{E}[X]$$

- application to polling
- Precise defn. of convergence
- convergence "in probability"

The Markov inequality

- Use a bit of information about a distribution to learn something about probabilities of "extreme events"
- "If $X \ge 0$ and $\mathbf{E}[X]$ is small, then X is unlikely to be very large"

Markov inequality: If $X \ge 0$ and a > 0, then $P(X \ge a) \le \frac{E[X]}{a}$.

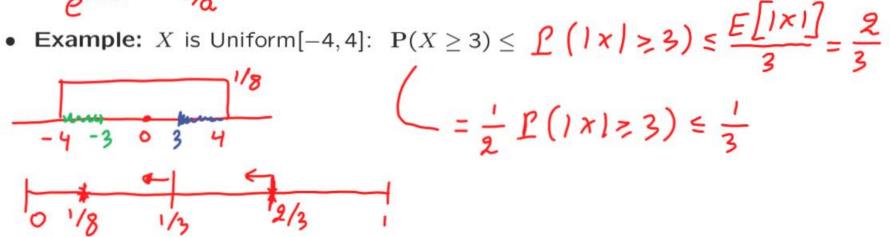
$$Y = 0, if X < a$$

 $a, if X > a$ $a l(X > a) = E[Y] \leq E[X]$

The Markov inequality

Markov inequality: If $X \ge 0$ and a > 0, then $P(X \ge a) \le \frac{E[X]}{2}$

Example: X is Exponential $(\lambda = 1)$: $P(X \ge a) \le \frac{1}{2}$



The Chebyshev inequality

- Random variable X, with finite mean μ and variance σ^2
- "If the variance is small, then X is unlikely to be too far from the mean"

Chebyshev inequality: $\mathbf{P}(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$

Markov inequality: If $X \ge 0$ and a > 0, then $\mathbf{P}(X \ge a) \le \frac{\mathbf{E}[X]}{a}$

$$P(|x-\mu| \ge c) = P((x-\mu)^2 \ge c^2) \le \frac{E[(x-\mu)^2]}{c^2} = \frac{\sigma^2}{c^2}$$

The Chebyshev inequality

Chebyshev inequality:
$$\mathbf{P}(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$
.

$$P(|X-\mu| \ge k\sigma) \le \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2} \qquad k=3 \qquad \le \frac{1}{9}$$

• Example: X is Exponential($\lambda = 1$): $P(X \ge a) \le \frac{1}{a}$ (Markov) $P(X \ge a) \le \frac{1}{a}$ (Markov) $P(X \ge a) = P(X - 1 \ge a - 1) \le P(1X - 1) \ge a - 1) \le \frac{1}{(a - 1)^2} \sim \frac{1}{a^2}$ The Weak Law of Large Numbers (WLLN)

• X_1, X_2, \ldots i.i.d.; finite mean μ and variance σ^2

Sample mean: $M_n = \frac{X_1 + \dots + X_n}{n}$ $\mu = \mathbb{E}[X_i]$ • $\mathbb{E}[M_n] = \frac{\mathbb{E}[X_1 + \dots + X_n]}{n} = \frac{n}{n} \frac{\mu}{n} = \mu$ • $\operatorname{Var}(M_n) = \frac{\operatorname{Var}(X_1 + \dots + X_n)}{n^2} = \frac{n}{n^2} = \frac{\sigma}{n^2}$ $\mathbb{P}(|M_n - \mu| \ge \epsilon) \le \frac{\operatorname{Var}(M_n)}{\mathbb{E}^2} = \frac{\sigma}{n\mathbb{E}^2} \xrightarrow{\mathbb{E}^2} 0$ (fixed $\varepsilon > 0$) $\mathbb{E}[M_n - \mu| \ge \epsilon) = \mathbb{P}(|X_1 + \dots + X_n - \mu| \ge \epsilon) \to 0$, as $n \to \infty$

Interpreting the WLLN

$$M_n = (X_1 + \dots + X_n)/n$$

X:= 1, if A occurs

WLLN: For
$$\epsilon > 0$$
, $\mathbf{P}(|M_n - \mu| \ge \epsilon) = \mathbf{P}(\left|\frac{X_1 + \dots + X_n}{n} - \mu\right| \ge \epsilon) \to 0$, as $n \to \infty$

- One experiment
- many measurements $X_i = \mu + W_i$
- W_i : measurement noise; $E[W_i] = 0$; independent W_i
- sample mean M_n is unlikely to be far off from true mean μ
- Many independent repetitions of the same experiment
- event A, with $p = \mathbf{P}(A)$
- X_i : indicator of event A
- the sample mean M_n is the **empirical frequency** of event A

E[x:]=p

The pollster's problem

- p: fraction of population that will vote "yes" in a referendum
- *i*th (randomly selected) person polled: $X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases}$
- $M_n = (X_1 + \dots + X_n)/n$: fraction of "yes" in our sample
- Would like "small error," e.g.: $|M_n p| < 0.01$

• Try
$$n = 10,000$$

•
$$P(|M_{10,000} - p| \ge 0.01) \le \frac{\sigma^2}{n \epsilon^2} = \frac{p(1-p)}{10^4 \cdot 10^{-4}} \le \frac{1}{4}$$
 = want $\frac{5}{20}$
 $\frac{1/4}{n 10^{-4}} \le \frac{5}{10^2} \iff n \ge \frac{10^6}{20} = \frac{50,000}{10^6}$ will suffice

Convergence "in probability"

WLLN: For any $\epsilon > 0$, $\mathbf{P}(|M_n - \mu| \ge \epsilon) \to 0$, as $n \to \infty$

- Would like to say that " M_n converges to μ "
- Need to define the word "converges"
- Sequence of random variables Y_n ; not necessarily independent

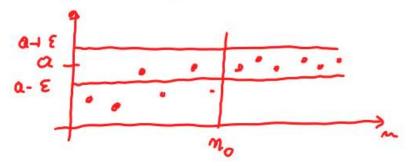
Definition: A sequence Y_n converges in probability to a number \underline{a} if: for any $\epsilon > 0$, $\lim_{n \to \infty} P(|Y_n - a| \ge \epsilon) = 0$

Understanding convergence "in probability"

- Ordinary convergence
 - Sequence a_n ; number a

 $a_n \rightarrow a$

" a_n eventually gets and stays (arbitrarily) close to a"

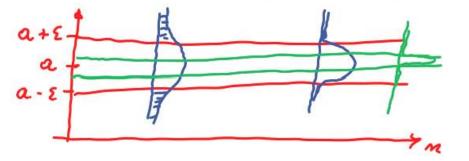


• For every $\epsilon > 0$, there exists n_0 , such that for every $n \ge n_0$, we have $|a_n - a| \le \epsilon$ Convergence in probability

- Sequence
$$Y_n$$
; number a

 $Y_n \to a$

• for any
$$\epsilon > 0$$
, $\mathbf{P}(|Y_n - a| \ge \epsilon) \to 0$



"(almost all) of the PMF/PDF of Y_n eventually gets concentrated (arbitrarily) close to a_{\bullet} "

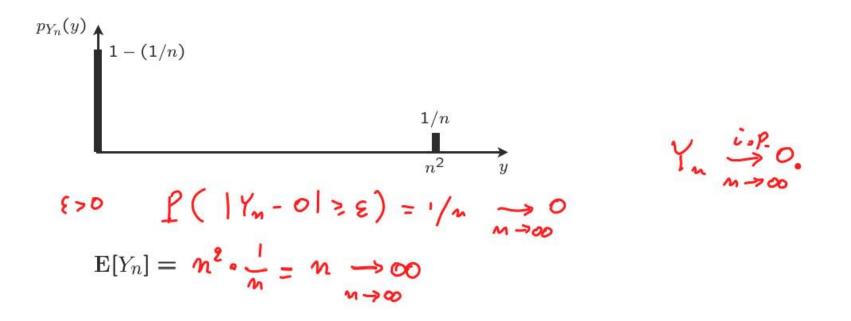
Some properties

- Suppose that $X_n \rightarrow a$, $Y_n \rightarrow b$, in probability
- If g is continuous, then $g(X_n) \rightarrow g(a)$

$$\chi_m^2 \rightarrow \alpha^2$$

- $X_n + Y_n \rightarrow a + b$
- But: $E[X_n]$ need not converge to a

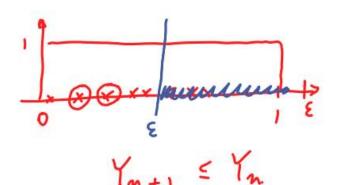
Convergence in probability examples



convergence in probability does not imply convergence of expectations

Convergence in probability examples

- X_i: i.i.d., uniform on [0,1]
- $Y_n = \min\{X_1, \ldots, X_n\}$



Related topics

- Better bounds/approximations on tail probabilities
 - Markov and Chebyshev inequalities
 - Chernoff bound $f(M_n-\mu/2a) \leq e^{-nk(a)}$
 - Central limit theorem $M_n \sim N(\mu, \sigma^2/m)''$
 - Different types of convergence
 - Convergence in probability

- Convergence "with probability 1" $P(\{w: Y_n(w) \rightarrow Y(w)\}) = 1$

Strong law of large numbers

Convergence of a sequence of distributions (CDFs) to a limiting CDF

M wes p

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.