LECTURE 21: The Bernoulli process

- Definition of Bernoulli process
- Stochastic processes
- Basic properties (memorylessness)
- The time of the kth success/arrival
- Distribution of interarrival times
- Merging and splitting
- Poisson approximation

The Bernoulli process

- A sequence of independent Bernoulli trials, X_i
- At each trial, *i*:

 $P(X_i = 1) = P(\text{success at the } i\text{th trial}) = p$ $P(X_i = 0) = P(\text{failure at the } i\text{th trial}) = 1 - p$

- Key assumptions:
 - Independence
 - Time-homogeneity
- Model of:
 - Sequence of lottery wins/losses
 - Arrivals (each second) to a bank
 - Arrivals (at each time slot) to server

— ...

Jacob Bernoulli (1655–1705)

Image is in the public domain. Source: <u>Wikipedia</u>.

Stochastic processes

• First view: sequence of random variables X_1, X_2, \ldots

```
var(X_i)
Interested in: \mathbf{E}[X_i]
                                                                       p_{X_i}(x)
p_{X_1,\ldots,X_n}(x_1,\ldots,x_n)
```

Second view – sample space:

 $\Omega =$

• Example (for Bernoulli process):

 $P(X_i = 1 \text{ for all } i) =$

Number of successes/arrivals S in n time slots

- S =
- P(S = k) =
- $\mathbf{E}[S] =$
- var(S) =

Time until the first success/arrival

•
$$T_1 =$$

•
$$\mathbf{P}(T_1 = k) =$$

•
$$\mathbf{E}[T_1] = \frac{1}{p}$$

•
$$\operatorname{var}(T_1) = \frac{1-p}{p^2}$$

Independence, memorylessness, and fresh-start properties

• Fresh-start after time *n*

• Fresh-start after time T_1

Independence, memorylessness, and fresh-start properties

• Fresh-start after a random time N

N =time of 3rd success

N = first time that 3 successes in a row have been observed

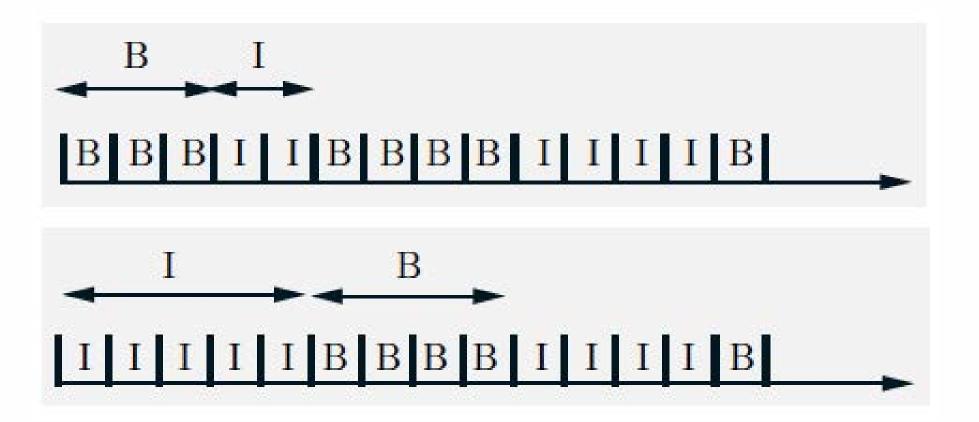
N = the time just before the first occurrence of 1,1,1

The process X_{N+1}, X_{N+2}, \ldots is:

- a Bernoulli process (as long as N is determined "causally")
- independent of N, X_1, \ldots, X_N

The distribution of busy periods

- At each slot, a server is busy or idle (Bernoulli process)
- First busy period:
 - starts with first busy slot
 - ends just before the first subsequent idle slot



Time of the *k*th success/arrival

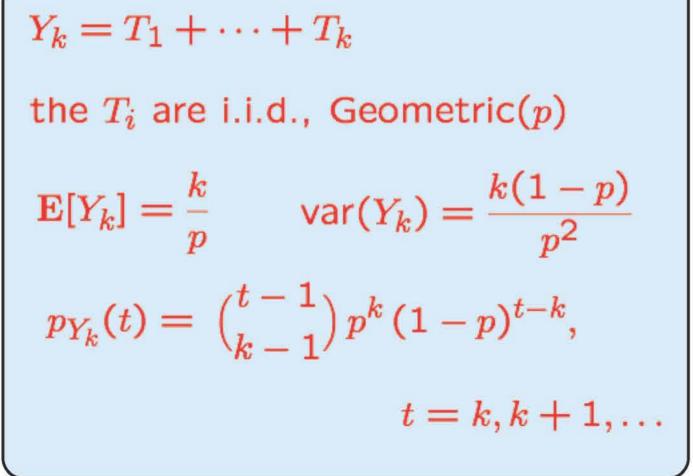
•
$$Y_k = \text{time of } k \text{th arrival}$$
 $Y_k = Y_k = Y_$

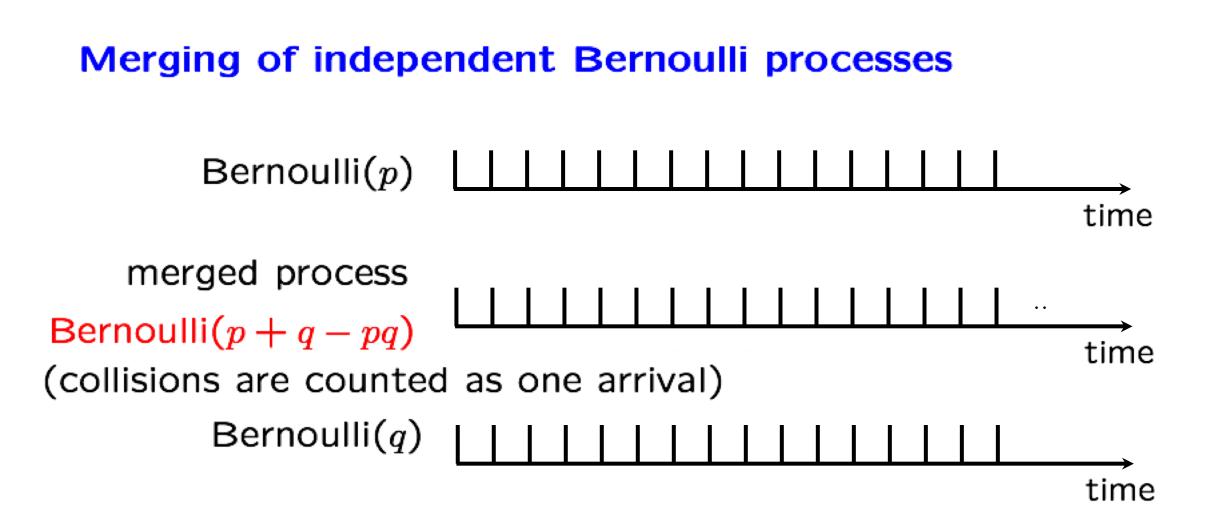
•
$$T_k = k$$
th inter-arrival time $= Y_k - Y_{k-1}$ $(k \ge 2)$ the

- The process starts fresh after time T_1
- T_2 is independent of T_1 ; Geometric(p); etc.

 $= T_1 + \dots + T_k$ $T_i \text{ are i.i.d., Geometric}(p)$

Time of the *k*th success/arrival





P(arrival in first process | arrival) =

Splitting of a Bernoulli process

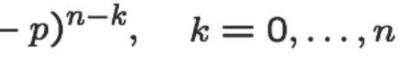
- Split successes into two streams, using independent flips of a coin with bias q
- Are the two resulting streams independent?

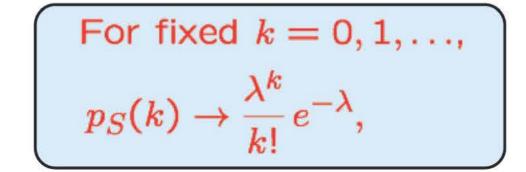
a coin with bias *q* Bernoulli process

Poisson approximation to binomial

- Interesting regime: large n , small p, moderate $\lambda = np$ •
- Number of arrivals S in n slots: $p_S(k) = \frac{n!}{(n-k)!k!} \cdot p^k (1-p)^{n-k}, \quad k=0,\ldots,n$

• Fact: for any fixed $k \ge 0$, $\lim_{n\to\infty}(1-\lambda/n)^{n-k}=e^{-\lambda}$





MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.