LECTURE 22: The Poisson process

- Definition of the Poisson process
- applications
- Distribution of number of arrivals
- The time of the k th arrival
- Memorylessness
- Distribution of interarrival times

Definition of the Poisson process

Bernoulli

- Independence
- Time homogeneity:

Constant p at each slot

- Small interval probabilities:

For VERY small δ :
$P(k, \delta) \approx\left\{\begin{array}{ll}1-\lambda \delta & \text { if } k=0 \\ \lambda \delta & \text { if } k=1 \\ 0 & \text { if } k>1\end{array} \quad P(k, \delta)= \begin{cases}1-\lambda \delta+O\left(\delta^{2}\right) & \text { if } k=0 \\ \lambda \delta+O\left(\delta^{2}\right) & \text { if } k=1 \\ 0+O\left(\delta^{2}\right) & \text { if } k>1\end{cases}\right.$

```
\lambda: "arrival rate"
```


Applications of the Poisson process

- Deaths from horse kicks in the Prussian army (1898)
- Particle emissions and radioactive decay
- Photon arrivals from a weak source
- Financial market shocks

Siméon Denis Poisson
(1781-1840)
(This image is in the public domain. Source: Wikipedia)

- Placement of phone calls, service requests, etc.

The Poisson PMF for the number of arrivals
$\underset{0}{\square-1}$

- N_{τ} : arrivals in $[0, \tau] \quad P(k, \tau)=\mathrm{P}\left(N_{\tau}=k\right)$
$n=\tau / \delta$ intervals/slots of length δ
\mathbf{P} (some slot contains two or more arrivals)

Bernoulli

$$
\begin{gathered}
p_{S}(k)=\frac{n!}{(n-k)!k!} \cdot p^{k}(1-p)^{n-k}, \\
k=0, \ldots, n \\
\begin{array}{c}
\lambda=n p \quad n \rightarrow \infty \quad p \rightarrow 0 \\
\text { For fixed } k=0,1, \ldots, \\
p_{S}(k) \rightarrow \frac{\lambda^{k}}{k!} e^{-\lambda},
\end{array}
\end{gathered}
$$

$N_{\tau} \approx$ binomial $\quad p=\lambda \delta+O\left(\delta^{2}\right)$

$$
n p=
$$

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

Mean and variance of the number of arrivals

$$
P(k, \tau)=\mathbf{P}\left(N_{\tau}=k\right)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

$$
\begin{aligned}
& \mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
& \operatorname{var}\left(N_{\tau}\right)=\lambda \tau
\end{aligned}
$$

$$
\mathrm{E}\left[N_{\tau}\right]=\sum_{k=0}^{\infty} k \frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}=\cdots
$$

$N_{\tau} \approx \operatorname{Binomial}(n, p)$

$$
n=\tau / \delta, \quad p=\lambda \delta+O\left(\delta^{2}\right)
$$

Example

- You get email according to a Poisson process,

$$
\begin{aligned}
& \mathbf{E}\left[N_{\tau}\right]=\lambda \tau \\
& \operatorname{var}\left(N_{\tau}\right)=\lambda \tau
\end{aligned}
$$

- Mean and variance of mails received during a day $=$
- \mathbf{P} (one new message in the next hour) $=$

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- \mathbf{P} (exactly two messages during each of the next three hours) $=$

The time T_{1} until the first arrival

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- Find the CDF: $\mathbf{P}\left(T_{1} \leq t\right)=$

$$
f_{T_{1}}(t)=\lambda e^{-\lambda t}, \quad \text { for } t \geq 0
$$

Exponential(λ)

Memorylessness: conditioned on $T_{1}>t$, the PDF of $T_{1}-t$ is again exponential

The time Y_{k} of the k th arrival

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- Can derive its PDF by first finding the CDF
- More intuitive argument:

$$
f_{Y_{k}}(y) \delta \approx \mathbf{P}\left(y \leq Y_{k} \leq y+\delta\right)=
$$

Erlang distribution: $\quad f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0$

Memorylessness and the fresh-start property

- Analogous to the properties for the Bernoulli process
- plausible, given the relation between the two processes
- use intuitive reasoning
- can be proved rigorously

Memorylessness and the fresh-start property

- If we start watching at time t,

we see Poisson process, independent of the history until time t
- time until next arrival:
- If we start watching at time T_{1}, we see Poisson process, independent of the history until time T_{1}
- hence: time between first and second arrival, $T_{2}=Y_{2}-Y_{1}$ is:
- similarly for all $T_{k}=Y_{k}-Y_{k-1}, k \geq 2$

$$
\begin{gathered}
Y_{k}=T_{1}+\cdots+T_{k} \text { is sum of i.i.d. exponentials } \\
\mathrm{E}\left[Y_{k}\right]=k / \lambda \quad \operatorname{var}\left(Y_{k}\right)=k / \lambda^{2}
\end{gathered}
$$

- An equivalent definition
- A simulation method

Bernoulli/Poisson relation

$$
\begin{aligned}
& n=\tau / \delta \\
& n p=\lambda \tau \\
& p=\lambda \delta
\end{aligned}
$$

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	$\lambda /$ unit time	$p /$ per trial
PMF of \# of Arrivals	Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k-th arrival	Erlang	Pascal

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda=0.6 /$ hour
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught

\mathbf{P} (fish for more than two hours) $=$
\mathbf{P} (fish for more than two and less than five hours) $=$

$$
\begin{gathered}
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!} \\
\mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}
\end{gathered}
$$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda=0.6 /$ hour
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught

$\mathbf{P}($ catch at least two fish $)=$

$$
\begin{gathered}
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!} \\
\mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}
\end{gathered}
$$

E[future fishing time | already fished for three hours]=

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda=0.6 /$ hour
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught

$\mathbf{E}[$ total fishing time] $=$

$$
\begin{gathered}
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!} \\
\mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}
\end{gathered}
$$

\mathbf{E} [number of fish] $=$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

