
LECTURE 22: The Poisson process 

• Definition of the Poisson process 

- applications 

• Distribution of number of arrivals 

• The time of the kth arrival 

• Memorylessness 

• Distribution of interarrival times 





Applications of the Poisson process

(1781-1840)

• Deaths from horse kicks in the Priussian army (1898)

• Placement of phone calls, service requests, etc.

• Particle emissions

• Photon arrivals from a weak source

The Poisson PMF for the number of arrivals

LECTURE 16

The Poisson process

• Readings: Start Section 5.2.

Lecture outline

• Review of Bernoulli process

• Definition of Poisson process

• Distribution of number of arrivals

• Distribution of interarrival times

• Other properties of the Poisson process

Bernoulli review

• Discrete time; success probability p

• Number of arrivals in n time slots:
binomial pmf

• Interarrival time pmf: geometric pmf

• Time to k arrivals: Pascal pmf

• Memorylessness

Definition of the Poisson process
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• P (k, τ) = Prob. of k arrivals in interval
of duration τ

• Assumptions:

– Numbers of arrivals in disjoint time in-
tervals are independent

– For VERY small δ:

P (k, δ) ≈

⎧
⎪⎨

⎪⎩

1 − λδ if k = 0
λδ if k = 1
0 if k > 1

– λ = “arrival rate”

PMF of Number of Arrivals N

P (k, τ) =
(λτ)ke−λτ

k!
, k = 0,1, . . .

• E[N ] = λτ

• σ2
N = λτ

• MN(s) = eλt(e
s−1)

Example: You get email according to a
Poisson process at a rate of λ = 0.4 mes-
sages per hour. You check your email every
thirty minutes.

– Prob(no new messages)=

– Prob(one new message)=

• Finely discretize [0, t]: approximately Bernoulli

• Nt (of discrete approximation): binomial
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Bernoulli Poisson

• Independence

• Constant p at each slot
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Applications of the Poisson process 

DefinitionDefinitionDefinitionDefinition time 
× × × × 

• Deaths from horse kicks in the Prussian army (1898) 

• Particle emissions and radioactive decay 

Siméon Denis Poisson • Photon arrivals from a weak source 
(1781-1840) 

(This image is in the public domain.• Financial market shocks 
Source: Wikipedia) 

• Placement of phone calls, service requests, etc. 
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Exampl 

• You get email according to , a oisson process, 
at a rate of ,x = 5 messages per hour. 

• Mean and variance of mai s received during a day -

• P(one ew message i the next hour) -
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Memorylessness. conditioned on T1 > t, 
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• Can derive its PDF by fi st finding th ,e CDF 

• More intuitive argument: 
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Memorylessness and the fresh-start property 

• Analogous to the properties for the Bernoulli process 

- plausible, given the relation between the two processes 

- use intuitive reasoning 

- can be proved rigorously 
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