
LECTURE 22: The Poisson process 


• 	 Definition of the Poisson process 

- applications 

• Distribution of number of arrivals 

• The time of the kth arrival 

• Memorylessness 

• Distribution of interarrival times 
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Definition of the Poisson process 


00 
Poisson ~ er~, -c.) =.i~ tc:=.O

" ] ( J. ffJ [ " Ime 

• 	 Numbers of arrivals in disjoint time 

intervals are independent 

P (k, T) = Prob. of k arrivals in interval of duration T 

• 	 Small interval probabilities: 

For VERY small 0: 


1 - '\0 if k = 0 
 1 - '\0 + 0(02) 

'\0 	 if k = 1 P (k, 0) = '\0 	+ 0(02 )P (k , o) '" 

0 if 	k > 1 0 +0(02) 

C,\: "a rri va l rate" J . 


Bernoulli 

I I I Ixl I Ixl I I I Ixl xj I I 
tim• e 

• 	 Independence 

• 	 Time homogeneity: 

Constant p at each slot 

if 	k = 0 O(S'") 
if k = 1 	 > 0 


dif k > 1 	 a~o 
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(This image is in the public domain. 
Source: Wikipedia) 
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https://en.wikipedia.org/wiki/Sim%C3%A9on_Denis_Poisson#/media/File:Simeon_Poisson.jpg


The Poisson PMF for the number of arrivals 


IIIIII I~ IIIIIIII ······ . 

o T t ime 

• N T: arriva ls in [0 , T] P(k, T) = P(NT = k) 

n = Ti d interva ls/slots of length d -;'A"Oet. 

P(som e slot contains t wo or m ore arri va ls) 

~!J(S(Jot ~ ()Q.$ 0>/2 cv,,/va.es) 
•
• 

2.)-= ,1: 0(0 «-"> 0
6 0-,>0 


1 (l< o",.IvQPs /.. 10 {JSO ....):::. f (J<. sPo,h 

N T '" bin omia l P = Ad + 0(d2) Q.a.v<. a~"''''' 


np = ,h to(Jh},,-r
• 

Bernoulli 


n ! k( 1 )n- kps (k) - (n - k) ! k ! 'P - p , 

k = O, ... , n 


A = np n -+ 00 p-+O-
For fi xed k = O, I " " , 


Ak 

ps (k) -+ k! e- ,\ 


k = O, l , ...

• 
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Mean and variance of the number of arrivals 


k = O, l , 	... 

va r(NT ) 	 = AT 

00 (AT)ke-M 	 _ , 
E IN T ] = 	 L k = ... - 11(: 

k=Q k! 

NT '" Binomial(n,p) 

n = T/8, P = A8 + 0(82 ) 

t; [ IV7;) 'Z l1li P;;; ~ -z; 

UO-I'(N,,) ';:; "'p(l-r)::d" 
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Example 

• You get email according to a Poisson process, 

at a rate of A = 5 messages per hour. 
va r (NT ) = AT 

• Mean and variance of mails received during a day = 

• P(one new message in the next hour) = P(I ,,) "" 5' e - 'i 

k = O, l , ... 

• 	 P(exactly two messages during each of the next three hours) 
• 


'5 '-e-'i 3 

2\ 
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The time Tl until the first arrival 


AT(>'T) ke 
,v P(k, T) = , k=O,l, ...I t • 

k!co t)O 

• Find the CDF: P(Tl < t) = 
-Ai:e 

Jr, (t) = >.e- At , for t > 0 

Exponential(>.) 

Memorylessness: conditioned on Tl > t , 

the PDF of Tl - t is again exponential 
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+P(~-fl,7) 

(AT)ke- AT The time Yk of the kth arrival 
P(k, T) = , k=O,l, ... 

k! 
.,., 

• Can derive its PDF by first finding the CDF I (I,.. ~ '() :~f (71., '7) 

• More intuitive argument: 
10 - , 

I 

o 1< -:i 

~ r("-' ,/) A_ 

k=! -d ,,) O(d 
t
) 


k=2 

Erlang distribution: y>O 
k=3

o~oIer k
) 

y 
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Memorylessness and the fresh-start property 


• 	 Analogous to the properties for the Bernoulli process 

plausible, given the relation between the two processes 

use intuitive reasoning 

- can be proved rigorously 
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Memorylessness and the fresh-start property 
v, 	

-
~ 

-7 c- ~ [,,.--:j3 C-I 
) T.,c. 

• 	 If we start watching at time t , 
timeo 

we see Poisson process, independent of the history until time t 


- time until next arrival: £:-7<1' (tl) ) '· .... d"fe.'"'ol"..) of- ",0>& 

• 	 If we start watching at time T 1 , " = 3 


we see Poisson process, independent of the history until time Tl 


hence: time between first and second arrival, T2 = Y2 - Yl is: f"'p (,.1) 

similarly for all Tk = Yk - Yk- 1, k > 2 i ... 01. ~f T, 

• 	 An equivalent definitionYk = Tl + ... + Tk is sum of i.i.d. exponentials
• 

• A simulation method 
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Bernoulli/Poisson relation 

n = Tid ,
1111111111111111 ··· ··· . np = A.T 
o T time P = Ad 

POISSON BERNOULLI 

Times of Arrival Continuous Discrete 

Arrival Rate >./unit t ime piper trial 

PMF of # of Arrivals 
• 

Poisson Binomial 

Interarrival Time Oistr. Exponential GeometriC 

Time to k-th arriva l Erlang Pascal 
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Example: Poisson fishing 


• Fish are caught as a Poisson process, A = O.6/hour 


fish for two hours; I x )( )( t , It, , 
" time• 2if you caught at least one fish, stop 5

,v)(I I " I •else continue until first fish is caught t time 

pefish for more than two hours)= p(0, 2) 
00 

1(1, >2):: (-ti (t)ol.t
.2) , 

E [N T ] = ATpefish for more than two and less than five hours)= 

P(O,~) (I - P(O,~)J 


f (2 < I, ~ 5") ~ S/' 5T, (t ) ol t 
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Example: Poisson fishing 


• Fish are caught as a Poisson process, A = O.6/hour 


fish for two hours; I x )( )( I time• 
if you caught at least one fish, stop 2 3 

I I I"'·...·...}( 
else continue until first fish is caught time• 

P(catch at least two fish)= 

1
q, 

P(k,~) = 1- P (0,:J.) - P(I,:z.) 
1<"-2 '
- lC11~:l)=( fy (i)d.7)0 ~ E [N T ] = AT 

I 

E[future fishing time I already fished for three hours]= _ 
; 
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Example: Poisson fishing 

• Fish are caught as a Poisson process, A = O.6/hour 


fish for two hours; 
time 

if you caught at least one fish, stop 


else continue until first fish is caught 
 time 

E[total fishing time]= £ [F] =.2. + F[r: -2J 
: 2. ..j(F=2)·O +1'(F->2)E[F-.2) F>2J 

: " + P(0) 2) , '/A 

E[number of fish]= A "t -I- P(0,2.) • J.. 
0.(;" .2. 
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