LECTURE 22: The Poisson process

- Definition of the Poisson process
 - applications
- Distribution of number of arrivals
- The time of the *k*th arrival
- Memorylessness
- Distribution of interarrival times

1

Definition of the Poisson process

Numbers of arrivals in disjoint time intervals are independent

 λ : "arrival rate"

 $P(k,\tau) = Prob.$ of k arrivals in interval of duration τ

Applications of the Poisson process

- Deaths from horse kicks in the Prussian army (1898)
- Particle emissions and radioactive decay
- Photon arrivals from a weak source
- Financial market shocks
- Placement of phone calls, service requests, etc.

Siméon Denis Poisson (1781-1840)

(This image is in the public domain. Source: Wikipedia)

Bernoulli

$$\frac{n!}{(n-k)! \, k!} \cdot p^k (1-p)^{n-k},$$

$$k = 0, \dots, n$$

$$np \quad n \to \infty \quad p \to 0$$

$$r \text{ fixed } k = 0, 1, \dots,$$

$$(k) \to \frac{\lambda^k}{k!} e^{-\lambda},$$

$$=\frac{(\lambda\tau)^k e^{-\lambda\tau}}{k!}, \quad k=0,1,\ldots$$

Mean and variance of the number of arrivals

$$P(k,\tau) = \mathbf{P}(N_{\tau} = k) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

$$\mathbf{E}[N_{\tau}] = \sum_{k=0}^{\infty} k \, \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!} = \cdots = \lambda \tau$$

$$N_{\tau} \approx \text{Binomial}(n, p)$$

 $n = \tau/\delta, p = \lambda \delta + O(\delta^2)$

E[Nz] = Mp = Az uar(Nz) ≈ np(1-p)≈ dz

Example

- You get email according to a Poisson process, at a rate of $\lambda = 5$ messages per hour.
- Mean and variance of mails received during a day = $5 \cdot 2 \cdot 4$
- P(one new message in the next hour) = $P(1,1) = 5e^{-5}$

$$P(k,\tau) = \frac{(\lambda\tau)^k e^{-\lambda\tau}}{k!}, \qquad k = 0, 1, \dots$$

• P(exactly two messages during each of the next three hours) =

$$\frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \left(P(2,1)\right)^3 = \left(\frac{5^2 e^{-5}}{2}\right)^3$$

The time T_1 until the first arrival

• Find the CDF: $P(T_1 \le t) =$

 $= 1 - P(T, >t) = 1 - P(0,t) = 1 - e^{-\lambda t}$

$$f_{T_1}(t) = \lambda e^{-\lambda t}$$
, for $t \ge 0$

Exponential(λ)

Memorylessness: conditioned on $T_1 > t$, the PDF of $T_1 - t$ is again exponential

Memorylessness and the fresh-start property

- Analogous to the properties for the Bernoulli process
 - plausible, given the relation between the two processes
 - use intuitive reasoning
 - can be proved rigorously

Memorylessness and the fresh-start property

If we start watching at time t,

we see Poisson process, independent of the history until time \boldsymbol{t}

- time until next arrival: Exp(), independent of post
- If we start watching at time T_1 , $T_1 = 3$ we see Poisson process, independent of the history until time T_1
 - hence: time between first and second arrival, $T_2 = Y_2 Y_1$ is: $F_{xp}(\lambda)$
 - similarly for all $T_k = Y_k Y_{k-1}$, $k \ge 2$

 $Y_k = T_1 + \dots + T_k$ is sum of i.i.d. exponentials $\mathbf{E}[Y_k] = k/\lambda$ $\operatorname{var}(Y_k) = k/\lambda^2$

time TK-1 start fresh

- time T_1 Y_1 is: $E \times p(\lambda)$ *ind.of* T_1
- An equivalent definition
- A simulation method

Bernoulli/Poisson relation

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	λ /unit time	p/per trial
PMF of # of Arrivals	Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k-th arrival	Erlang	Pascal

 $\lambda \tau$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda = 0.6/hour$
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught

P(fish for more than two hours) = P(0, 2) $I(T, > 2) = \int_{2}^{\infty} f_{T_1}(t) dt$

P(fish for more than two and less than five hours) = P(0,2)(1 - P(0,3)) $P(2 < T_1 \le 5) = \int_2^5 f_{T_1}(t) dt$

 $P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}$ $\mathbf{E}[N_{\tau}] = \lambda \tau$ $f_{Y_k}(y) = \frac{\lambda^{\kappa} y^{\kappa-1} e^{-\lambda y}}{(k-1)!}$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda = 0.6/hour$
 - fish for two hours;
 - if you caught at least one fish, stop
 - else continue until first fish is caught

```
P(catch at least two fish)=

\sum_{k=2}^{\infty} P(k,2) = 1 - P(0,2) - P(1,2)

k=2

f(1_2 \le 2) = \int_{0}^{2} f_{1_2}(y) dy
```

 ${
m E}$ [future fishing time | already fished for three hours]= -

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda = 0.6/hour$
 - fish for two hours;
 - if you caught at least one fish, stop
 - else continue until first fish is caught

E[total fishing time] = E[F] = 2 + E[F - 2]

 $= 2 + P(F=2) \cdot O + P(F>2) E[F-2]F>2]$ = 2 + P(0,2) \cdots'/\lambda

E[number of fish] = $\lambda z + P(0,2) \cdot 1$ $0.6 \cdot 2$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.