LECTURE 22: The Poisson process

- Definition of the Poisson process
- applications
- Distribution of number of arrivals
- The time of the k th arrival
- Memorylessness
- Distribution of interarrival times

Definition of the Poisson process

Bernoulli

- Independence
- Time homogeneity: Constant p at each slot

- Small interval probabilities:

For VERY small δ :

$$
P(k, \delta) \approx\left\{\begin{array}{ll}
1-\lambda \delta & \text { if } k=0 \\
\lambda \delta & \text { if } k=1 \\
0 & \text { if } k>1
\end{array} \quad P(k, \delta)=\left\{\begin{array}{ll}
1-\lambda \delta+O\left(\delta^{2}\right) & \text { if } k=0 \\
\lambda \delta+O\left(\delta^{2}\right) & \text { if } k=1 \\
0+O\left(\delta^{2}\right) & \text { if } k>1
\end{array} \quad O\left(\delta^{2}\right) \underset{\delta}{\delta \rightarrow 0}\right.\right.
$$

[^0]
Applications of the Poisson process

- Deaths from horse kicks in the Prussian army (1898)
- Particle emissions and radioactive decay
- Photon arrivals from a weak source
- Financial market shocks

Siméon Denis Poisson

(1781-1840)
(This image is in the public domain. Source: Wikipedia)

- Placement of phone calls, service requests, etc.

The Poisson PMF for the number of arrivals

$\underline{P}(k$ arrivals in Poisson) $\approx \underline{P}(k$ slots
$N_{\tau} \approx \operatorname{binomial} \quad p=\lambda \delta+O\left(\delta^{2}\right)$ Qavcannival $n p=\lambda \tau+O(\delta) \approx \lambda \tau$

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

Mean and variance of the number of arrivals

$$
\begin{aligned}
& P(k, \tau)=\mathrm{P}\left(N_{\tau}=k\right)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots \\
& \mathrm{E}\left[N_{\tau}\right]=\sum_{k=0}^{\infty} k \frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}=\cdots=\lambda \tau \\
& N_{\tau} \approx \operatorname{Binomial}(n, p) \\
& n=\tau / \delta, p=\lambda \delta+O\left(\delta^{2}\right) \\
& E\left[N_{\tau}\right] \approx M p \approx \lambda \tau \\
& \operatorname{var}\left(N_{\tau}\right)=\lambda \tau
\end{aligned} \quad \begin{aligned}
& \mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
& \operatorname{var}\left(N_{\tau}\right) \approx n p(1-p) \approx \lambda \tau
\end{aligned}
$$

Example

- You get email according to a Poisson process,

$$
\begin{aligned}
& \mathbf{E}\left[N_{\tau}\right]=\lambda \tau \\
& \operatorname{var}\left(N_{\tau}\right)=\lambda \tau
\end{aligned}
$$

- Mean and variance of mails received during a day $=5 \cdot 24$
- \mathbf{P} (one new message in the next hour) $=P(1,1)=5 e^{-5}$
$P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots$
- \mathbf{P} (exactly two messages during each of the next three hours) $=$
$1,2,2,2(P(2,1))^{3}=\left(\frac{5^{2} e^{-5}}{2}\right)^{3^{0}}$

The time T_{1} until the first arrival

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- Find the CDF: $\mathbf{P}\left(T_{1} \leq t\right)=$

$$
\begin{aligned}
& \quad=1-P(T,>t)=1-P(0, t)=1-e^{-\lambda t} \\
& f_{T_{1}}(t)=\lambda e^{-\lambda t}, \quad \text { for } t \geq 0
\end{aligned}
$$

Exponential (λ)

Memorylessness: conditioned on $T_{1}>t$, the PDF of $T_{1}-t$ is again exponential

The time Y_{k} of the k th arrival

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- Can derive its PDF by first finding the CDF $P\left(Y_{k} \leqslant y\right)=\sum_{n=k}^{\infty} P(n, y)$
- More intuitive argument:

$$
\begin{aligned}
& \hat{f}_{Y_{k}}(y) \beta \approx \mathbf{P}\left(y \leq Y_{k} \leq y+\delta\right)= \\
& \approx P(k-1, y) \lambda \delta \\
& \\
& +P(k-2, y) O\left(\delta^{2}\right) \\
& \\
& +P(k-3, y) O\left(\delta^{2}\right)
\end{aligned}
$$

Erlang distribution: $\quad f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0$
onoler k

$$
\frac{(\lambda y)^{k-1} e^{-\lambda y}}{\left(k-f_{y_{s}}(y)\right.} \lambda_{k=1}
$$

Memorylessness and the fresh-start property

- Analogous to the properties for the Bernoulli process
- plausible, given the relation between the two processes
- use intuitive reasoning
- can be proved rigorously

Memorylessness and the fresh-start property

- If we start watching at time t,
 we see Poisson process, independent of the history until time t stan fresh h^{2} - time until next arrival: Exp (λ), independent of post
- If we start watching at time $T_{1}, \quad T_{1}=3$ we see Poisson process, independent of the history until time T_{1}
- hence: time between first and second arrival, $T_{2}=Y_{2}-Y_{1}$ is: Exp (λ)
- similarly for all $T_{k}=Y_{k}-Y_{k-1}, k \geq 2$

$$
\begin{gathered}
Y_{k}=T_{1}+\cdots+T_{k} \text { is sum of i.i.d. exponentials } \\
\mathrm{E}\left[Y_{k}\right]=k / \lambda \quad \operatorname{var}\left(Y_{k}\right)=k / \lambda^{2}
\end{gathered}
$$

- An equivalent definition
- A simulation method

Bernoulli/Poisson relation

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	$\lambda /$ unit time	$p /$ per trial
PMF of \# of Arrivals	\bullet Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k-th arrival	Erlang	Pascal

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda=0.6 /$ hour
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught
$\mathbf{P}($ fish for more than two hours $)=P(0,2)$

$$
P\left(T_{1}>2\right)=\int_{2}^{\infty} f_{T_{1}}(t) d t
$$

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}
$$

\mathbf{P} (fish for more than two and less than five hours) $=$

$$
\begin{aligned}
& P(0,2)(1-P(0,3)) \\
& f\left(2<T_{1} \leq 5\right)=\int_{2}^{5} f_{T_{1}}(t) d t
\end{aligned}
$$

$$
\mathrm{E}\left[N_{\tau}\right]=\lambda \tau
$$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda=0.6 /$ hour
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught

$\mathbf{P}($ catch at least two fish $)=$
$\sum^{\infty} P(k, 2)=1-P(0,2)-P(1,2)$
$P\left(y_{2} \leqslant 2\right)=\int_{0}^{2} f_{y_{2}}(y) d y$
$E\left[f u t u r e\right.$ fishing time | already fished for three hours] $=\frac{1}{\lambda}$

$$
\begin{gathered}
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!} \\
\mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}
\end{gathered}
$$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda=0.6 /$ hour
- fish for two hours;
- if you caught at least one fish, stop
- else continue until first fish is caught

$E[$ total fishing time $]=E[F]=2+E[F-2]$

$$
\begin{aligned}
& =2+P(F=2) \cdot 0+P(F>2) E[F-2 \mid F>2] \\
& =2+P(0,2) \cdot 1 / \lambda
\end{aligned}
$$

$$
\mathrm{E} \text { [number of fish] }=\lambda_{0.6 * 2}+P(0,2) \cdot 1
$$

$$
\begin{gathered}
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!} \\
\mathrm{E}\left[N_{\tau}\right]=\lambda \tau \\
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}
\end{gathered}
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: λ : "arrival rate"

