LECTURE 23: More on the Poisson process

- The sum of independent Poisson r.v.s
- Merging and splitting
- Random incidence

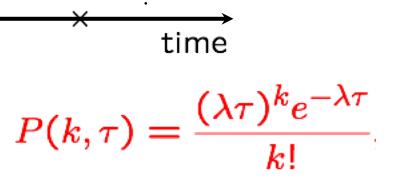
The sum of independent Poisson random variables

- Poisson process of rate $\lambda = 1$
- Consecutive intervals of length μ and ν
- Numbers of arrivals during these intervals: M and N
- M:

• N:

- Independent? •
- M + N:

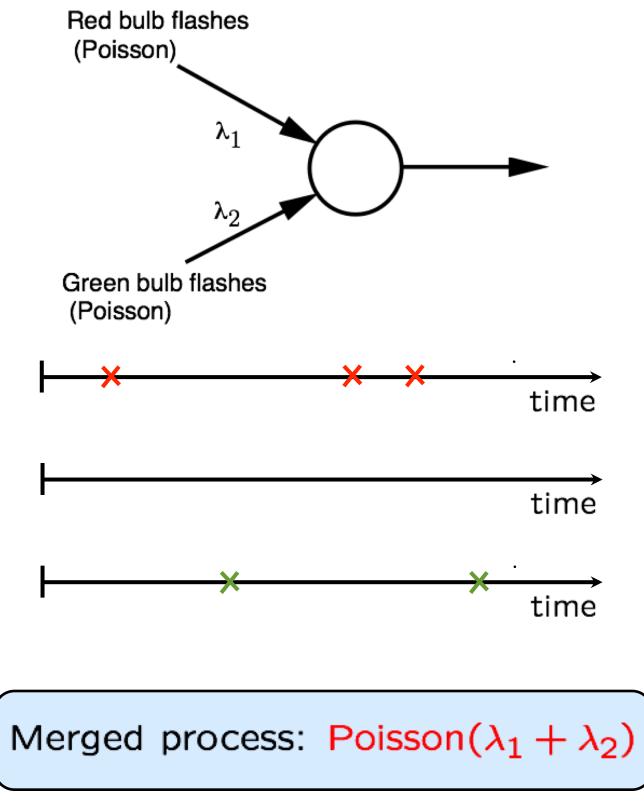
The sum of independent Poisson random variables, with means/parameters μ and ν , is Poisson with mean/parameter $\mu + \nu$



Merging of independent Poisson processes Red bulb flashes (Poisson) $O(\delta^2)$ $1 - \lambda_1 \delta$ $\lambda_1\delta$ ≥ 2 1 0 Green bulb flashes $1 - \lambda_2 \delta$ 0 (Poisson) $\lambda_2 \delta$ 1

 \geq 2

 $O(\delta^2)$



Where is an arrival of the merged process coming from?

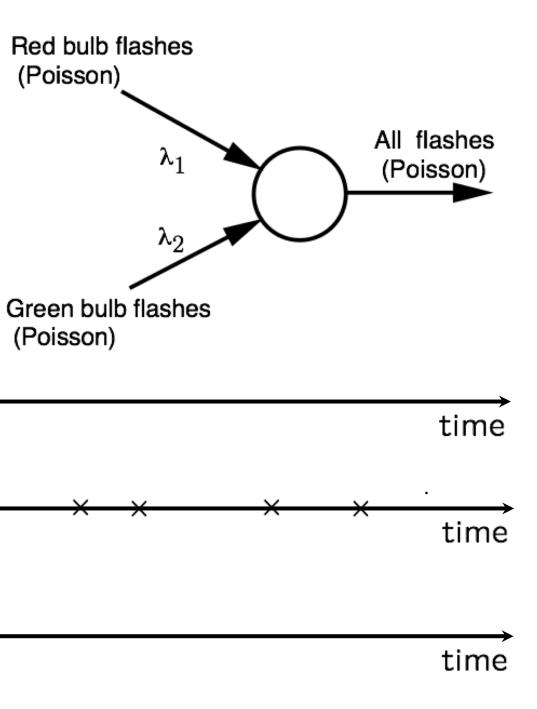
 $P(\text{Red} \mid \text{arrival at time } t) =$

		$1-\lambda_1\delta$	$\lambda_1\delta$	$O(\delta^2)$	
		0	1	≥ 2	
$1-\lambda_2\delta$	0	$1-(\lambda_1+\lambda_2)\delta$	$\lambda_1\delta$		
$\lambda_2 \delta$	1	$\lambda_2\delta$	$O(\delta^2)$		
$O(\delta^2)$	≥ 2				

P(kth arrival is Red) =

• Independence for different arrivals

P(4 out of first 10 arrivals are Red) =



The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)
- Find expected time until first burnout

- X, Y, Z: first arrivals in independent Poisson processes
- Merged process:
- min{X,Y,Z}: 1st arrival in merged process

>
time
time
time

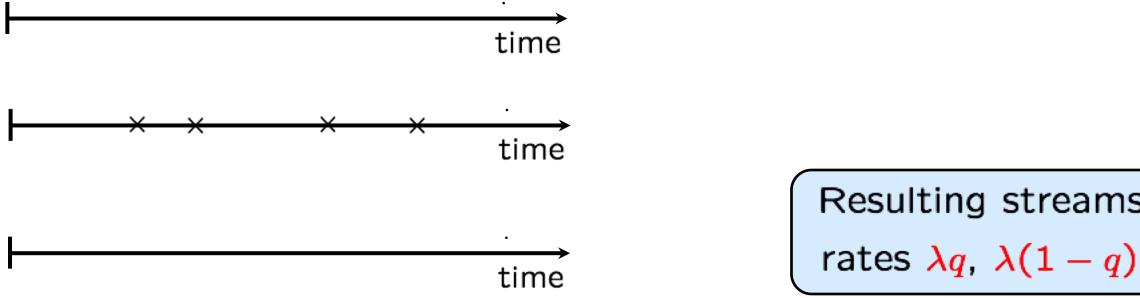
The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)
- Find expected time until all burn out

>
time
time
time

Splitting of a Poisson process

- Split arrivals into two streams, using independent coin flips of a coin with bias q
 - assume that coin flips are independent from the original Poisson process



 Are the two resulting streams independent? Surprisingly, yes!

Resulting streams are Poisson,

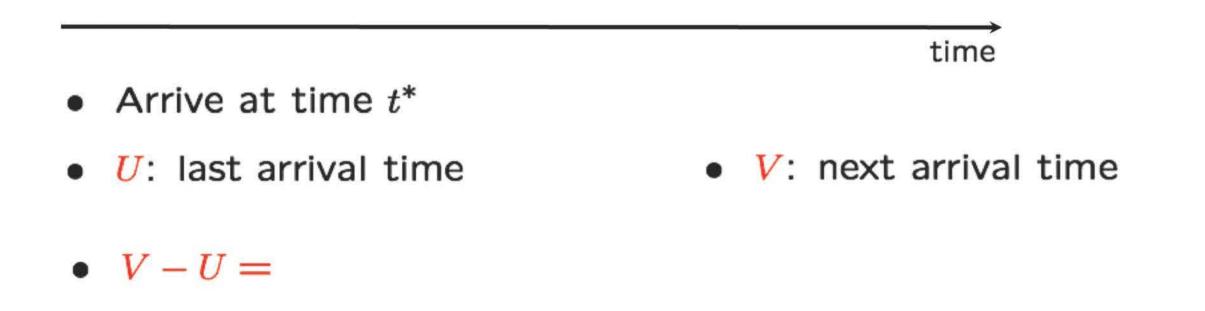
"Random incidence" in the Poisson process

Poisson process that has been running forever

time

- Believe that $\lambda = 4/hour$, so that $\mathbf{E}[T_k] =$
- Show up at some time and measure interarrival time
 - do it many times, average results, see something around 30 mins! Why?

"Random incidence" in the Poisson process — analysis



• $\mathbf{E}[V - U] =$

• V - U: interarrival time you see, versus kth interarrival time

Random incidence "paradox" is not special to the Poisson process

time

- **Example:** interrarival times, i.i.d., equally likely to be 5 or 10 minutes expected value of kth interarrival time:
- you show up at a "random time"

P(arrive during a 5-minute interarrival interval) =

expected length of interarrival interval during which you arrive =

- Calculation generalizes to "renewal processes:" i.i.d. interarrival times, from some general distribution
- "Sampling method" matters

Different sampling methods can give different results

- Average family size?
 - look at a "random" family (uniformly chosen)
 - look at a "random" person's (uniformly chosen) family
- Average bus occupancy?
 - look at a "random" bus (uniformly chosen)
 - look at a "random" passenger's bus
- Average class size?

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.