LECTURE 23: More on the Poisson process

- The sum of independent Poisson r.v.s
- Merging and splitting
- Random incidence

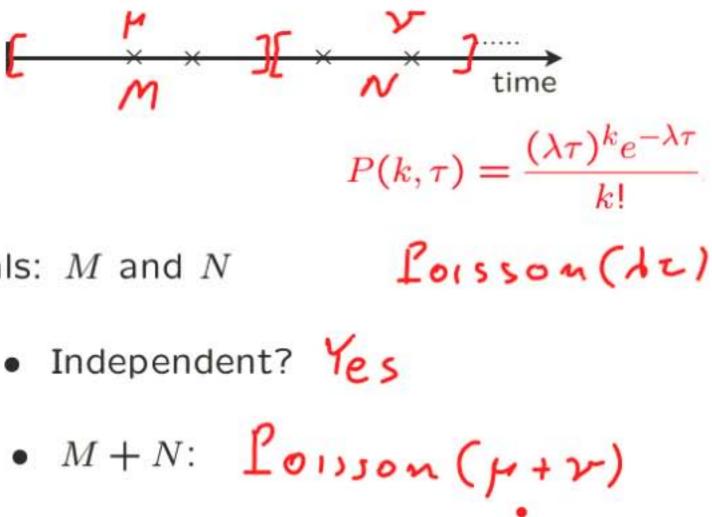
1

The sum of independent Poisson random variables

- Poisson process of rate $\lambda = 1$
- Consecutive intervals of length μ and ν ٠
- Numbers of arrivals during these intervals: M and N•
- · M: Loisson (µ)
- · N: Loisson (2)

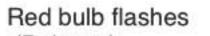
- Independent? Yes

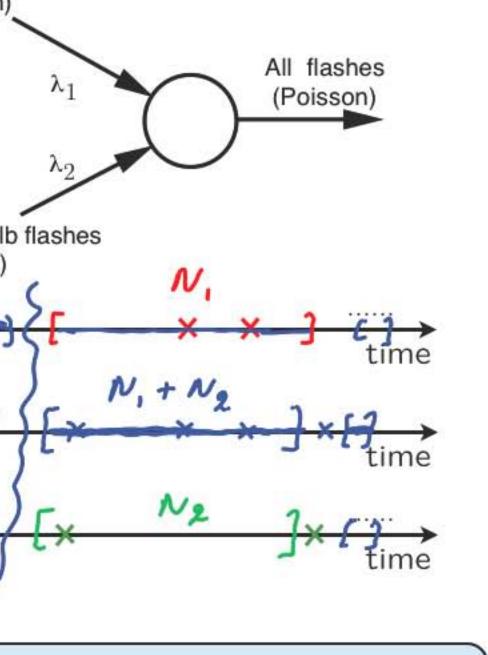
The sum of independent Poisson random variables, with means/parameters μ and ν , is Poisson with mean/parameter $\mu + \nu$



Merging of independent Poisson processes

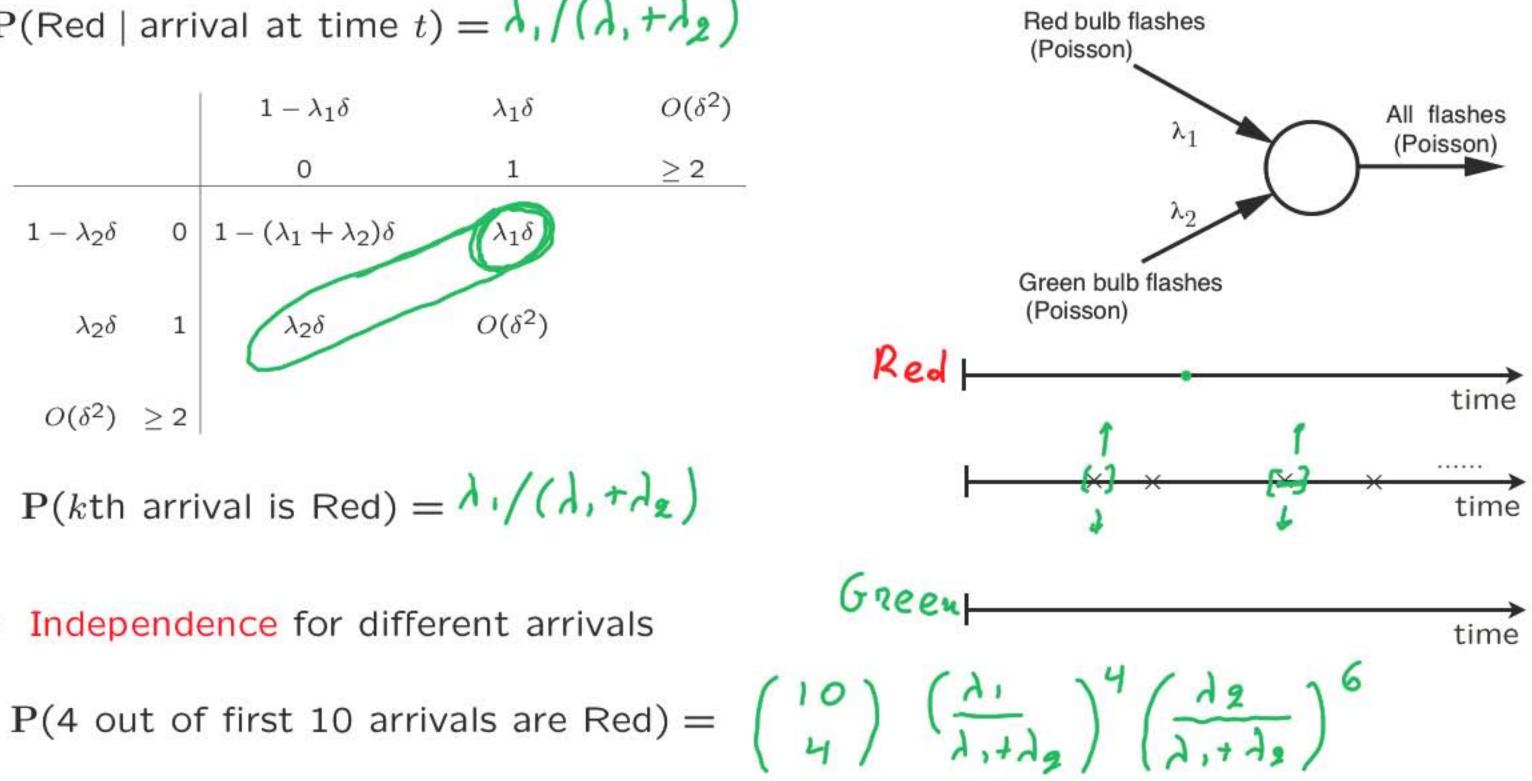
	24 C			(Poisson)
	$1 - \lambda_1 \delta$	$\lambda_1 \delta$	$O(\delta^2)$	S-3
1 <u>5</u> .	0	1	<u>≥</u> 2	2
$1 - \lambda_2 \delta$ C	(1-2,5). (1-2,5)	7,8(1-228)	۵	Green bulb (Poisson)
	725(1-1,5)		4	
$O(\delta^2) \geq 2$	2	•	8	1 2 3
		72:0	(δ^2)	/
0:1-($\lambda, + \lambda_2)\delta$	1:(2,+.	12)8	Merged pr





process: $Poisson(\lambda_1 + \lambda_2)$

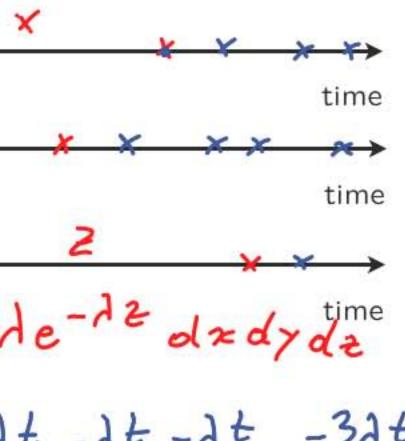
Where is an arrival of the merged process coming from? P(Red | arrival at time t) = $\lambda_1/(\lambda_1 + \lambda_2)$



The time the first (or the last) light bulb burns out Three lightbulbs independent lifetimes X, Y, Z; exponential(λ) Find expected time until first burnout = $\frac{1}{3}$ E[min{x, Y, Z}] = {\} min{x, Y, Z} le - lx le - ly le - lz dzdydz $I(\min\{x, Y, z\} \ge t) = I(x \ge t, Y \ge t, z \ge t) = e^{-\lambda t} e^{-\lambda t} = e^{-\frac{3\lambda t}{2}}$ Exp(31)

- X, Y, Z: first arrivals in independent Poisson processes
- Merged process: Loisson (3)

 $min{X, Y, Z}:$ 1st arrival in merged process $\checkmark Exp(3\lambda)$

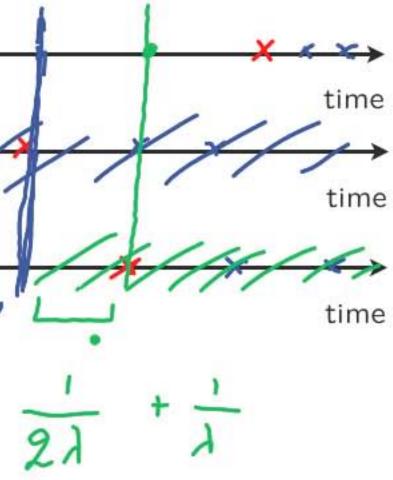


The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)
- Find expected time until all burn out

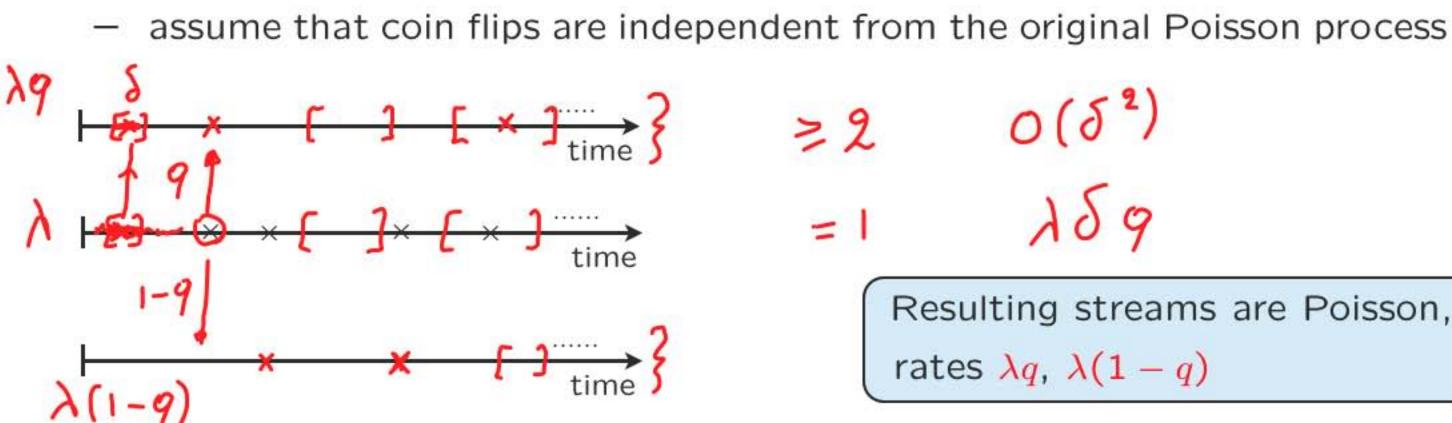
mar {x, Y, 2}

37 +



Splitting of a Poisson process

Split arrivals into two streams, using independent coin flips of a coin with bias q.



Are the two resulting streams independent?

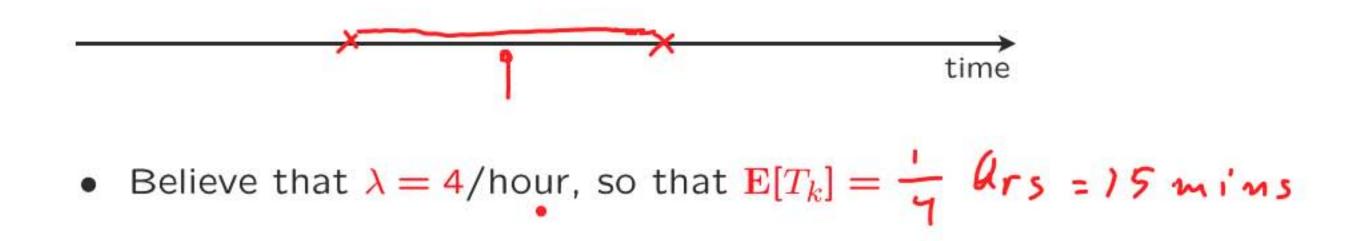
Surprisingly, yes!

Resulting streams are Poisson,

7

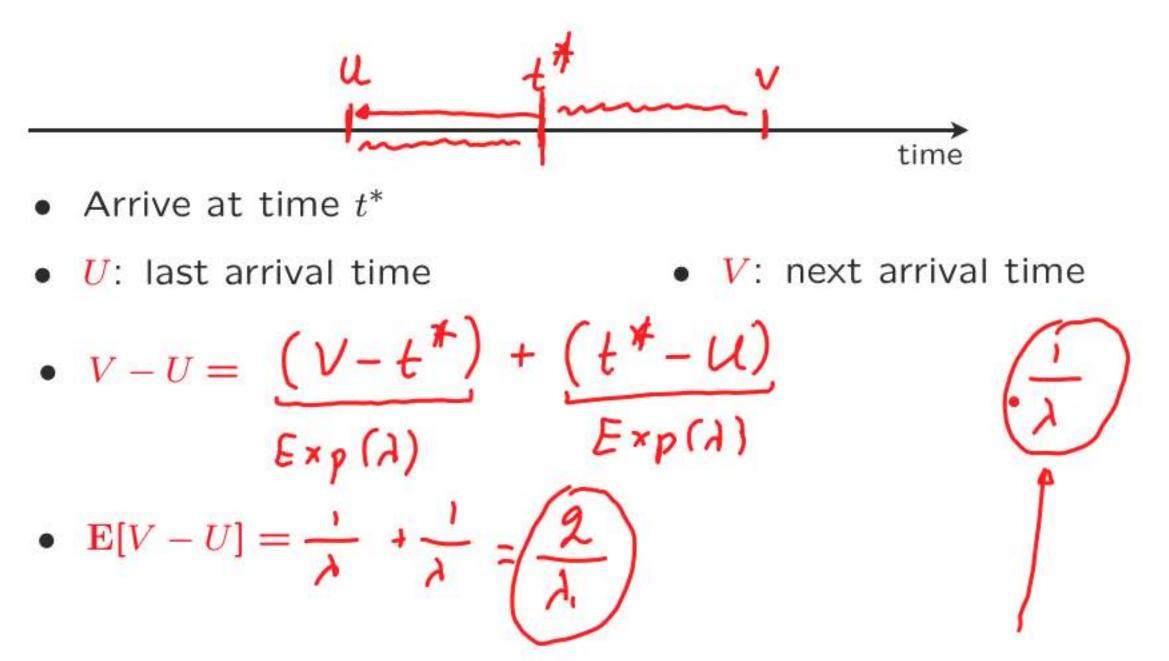
"Random incidence" in the Poisson process

Poisson process that has been running forever .



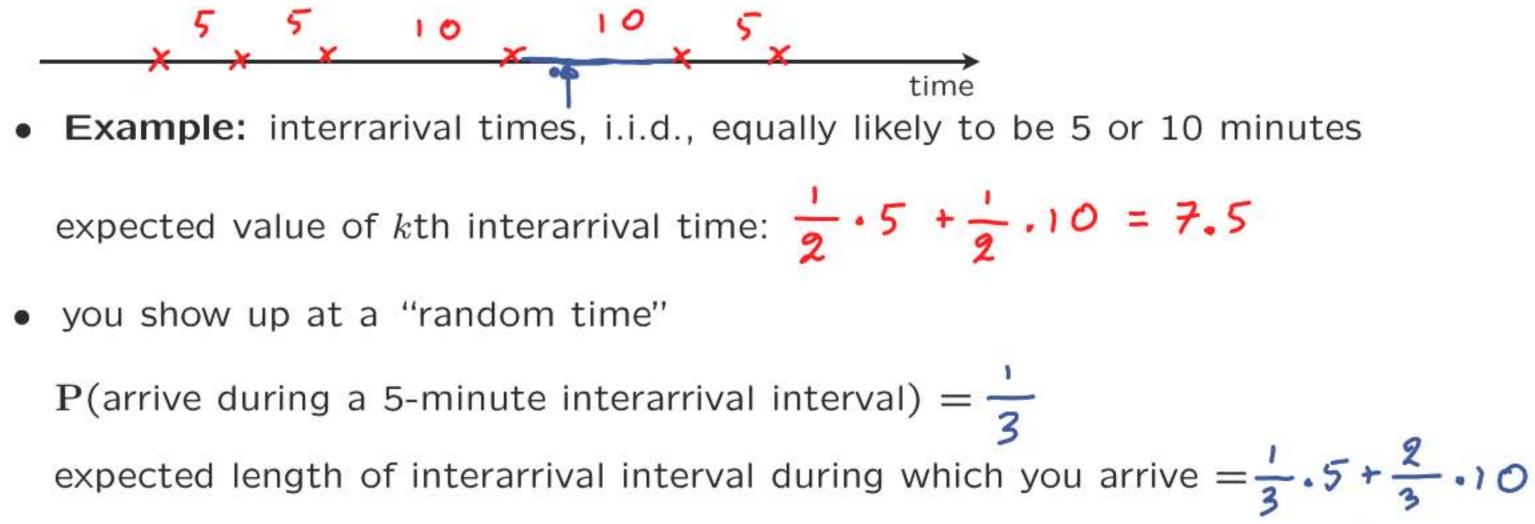
- Show up at some time and measure interarrival time
 - do it many times, average results, see something around 30 mins! Why?

"Random incidence" in the Poisson process — analysis



• V - U: interarrival time you see, versus kth interarrival time

Random incidence "paradox" is not special to the Poisson process



- Calculation generalizes to "renewal processes:" i.i.d. interarrival times, from some general distribution
- "Sampling method" matters

28.3

Different sampling methods can give different results

- Average family size?
 - look at a "random" family (uniformly chosen)
 - look at a "random" person's (uniformly chosen) family $\frac{3}{3} \cdot 1 + \frac{6}{3} \cdot 6$
- Average bus occupancy? •
 - look at a "random" bus (uniformly chosen)
 - look at a "random" passenger's bus
- Average class size?

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.