Markov processes - I

- checkout counter example

- Markov process definition
- n -step transition probabilities
- classification of states

discrete-time finite state Markov chains
(X) "a time n "
- X_{n} state after n transitions
- belongs to a finite set
- initial state X_{0} either given or random

$$
\begin{gathered}
p_{31}+p_{32}+p_{33}+p_{33}=1 \\
\text { (1) } p_{21}
\end{gathered}
$$

- transition probabilities:

$$
\left.\begin{array}{l}
\quad \begin{array}{r}
\text { - transition probabilities: } \\
p_{i j}
\end{array}=\mathbf{P}\left(X_{1}=j \mid X_{0}=i\right)^{\forall n} \tag{4}\\
=\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right)^{2}
\end{array}\right\} \begin{aligned}
& \text { time } \\
& \sum_{j} p_{i j}=m=1
\end{aligned}
$$

"given current state, the past doesn't matter"

$$
\begin{aligned}
p_{i j} & \stackrel{\stackrel{\rightharpoonup}{\not}}{P} \mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right) \\
& =\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}, \ldots, X_{0}\right)
\end{aligned}
$$

- model specification: identify states, transitions, and transition probabilities
n-step transiţion.probabilities

$$
r_{i j}(0)=\left\{\begin{array}{ll}
1 & 1+i=j \\
0 & i \neq j
\end{array} \quad C_{i j}(1)=P_{i j} \forall i, \forall j\right.
$$

- state probabilities, given initial state i:

$$
\begin{aligned}
r_{i j}(n) & =\mathrm{P}\left(X_{n}=j \mid X_{0}=i\right) \sum_{i+j} r_{i j}^{* j(n)}=\dot{1} \\
& =\mathrm{P}\left(X_{n+3}=j \mid-(S)=i j\right)
\end{aligned}
$$

- key recursion:

- random initial state:

$$
\begin{aligned}
& \text { dom initial state: ruithal } \\
& \mathrm{P}\left(X_{n}=j\right)=\sum_{i=1}^{m} \mathrm{~F}\left(X_{0}=i\right){ }_{i j}(n)
\end{aligned}
$$

$=p_{k} j$

$$
\xrightarrow\left[\left(r_{i j}(x)\right]{\longleftrightarrow}=\sum_{k=1}^{\longrightarrow-1} \rho_{i k}^{m} r_{k j}(x-1)\right.
$$

example

$$
\left\{\begin{array}{l}
r_{11}(n)=r_{11}(n-1) \times 0.5+r_{12}(n-1) \times 0.2 \\
r_{12}(n)=1-r_{11}(n)
\end{array}\right.
$$

$$
r_{11}(101)=\frac{2}{7} \times 0.5+\frac{5}{7} \times 0.2=\frac{1}{7}+\frac{1}{7}=\frac{2}{7} 7
$$

$$
\left.r_{i j}(n)=\mathrm{P}\left(X_{n}\right)=j \mid X_{0}=i\right)
$$

generic convergence questions

$$
r_{i j}(n) \xrightarrow[n \rightarrow \infty]{ } \pi_{j} ?
$$

- does $r_{i j}(n)$ converge to something?

$$
\begin{aligned}
& n \text { odd: } r_{22}(n)=0 \\
& n \text { even: } r_{22}(n)=1
\end{aligned}
$$

- does the limit depend on initial state?

$$
\begin{aligned}
& r_{11}(n)=1 \\
& r_{31}(n)=0 \\
& r_{21}(n)=1 / 2
\end{aligned}
$$

recurrent and transient states

- state i is recurrent if "starting from i, and from wherever you can go, there is a way of returning to i "
- if not recurrent, called transient

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

