Markov processes - III

- review of steady-state behavior
- probability of blocked phone calls
- calculating absorption probabilities
- calculating expected time to absorption

review of steady state behavior
- Markov chain with a single class of recurrent states, aperiodic; and some transient states; then,

$$
\begin{gathered}
\left.\lim _{n \rightarrow \infty} r_{i j}(n)=\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)=\pi_{j}\right) \quad \forall i \\
\mathbb{P}\left(x_{n}=j\right)=\sum_{i} \sum_{i j} \underbrace{}_{i j}\left(x_{n}\right), \mathbb{P}\left(x_{0}=i\right) \\
\underbrace{}_{i j} \underbrace{\mathbb{P}\left(x_{0}=i\right)}
\end{gathered}
$$

- can be found as the unique solution to the balance equations

$$
\pi_{j}=\sum_{k} \pi_{k} p_{k j}, \quad j=1, \ldots, m,
$$

- together with $\sum_{j} \pi_{j}=1$
on the use of steady state probabilities, example

$$
\begin{gathered}
\left\{\begin{array}{l}
\Pi_{1} \times 0.5=\pi_{2} \times 0.2 \\
\Pi_{1}+\Pi_{2}=1
\end{array}\right. \\
\pi_{1}=2 / 7, \pi_{2}=5 / 7
\end{gathered}
$$

assume process starts in state 1

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=1 \text { and } X_{100}=1 \mid X_{0}=1\right)= \\
& \mathbb{P}\left(x_{1}=1 \mid x_{0}=1\right), \mathbb{P}\left(x_{100}=1 \mid x_{1}=1, x_{2}<-1\right) \\
& p_{11} \times r_{11}(99) \approx \rho_{11}=\pi_{1}=0.5 \times \frac{2}{7} \\
& \begin{array}{l}
\mathrm{P}\left(X_{100}=1 \text { and } X_{101}=2 \mid X_{0}=1\right)= \\
\mathbb{P}\left(X_{100}=1 \mid X_{0}=1\right) \times \mathbb{P}\left(X_{101}=2 \mid X_{100}=1, X_{00} X_{1}\right)
\end{array} \\
& r_{11}(100) \times \rho_{12} \approx \pi_{1} \times \rho .2=\frac{2}{7} \times 0.5 \\
& \begin{array}{l}
P\left(X_{100}=1 \text { and } X_{200}=1 \mid X_{0}=1\right)= \\
\quad \cdot P\left(x_{100}=1 \mid X_{0}=1\right) \approx \mathbb{P}\left(\times 200=1 \mid X_{100}=1, \times 1\right)
\end{array} \\
& \begin{array}{l}
={ }^{1 P}\left(x_{100}=1 \mid x_{0}=1\right) \times \mathbb{P}\left(\times 200=1 \mid \times 100=1, x_{1}<1\right) \\
=r_{11}(100) \times r_{11}(100) \approx \pi_{1} \times \pi_{1}=\pi_{1}^{2}=(2 / 7)^{2}
\end{array}
\end{aligned}
$$

is $x=99,100$ larger enough?

2) $n=10$ of magnitude
3) by theory
(c) ${ }^{n} \quad 0<c<1$
$-c=0.997$

design of a phone system

- calls originate as a Poisson process, rate λ
- each call duration is exponential (parameter μ)

- need to decide on how many lines, B?

- for time slots of small duration δ

- $\mathrm{P}($ a new call arrives $) \approx \lambda \delta$
- if you have i active calls, then $\mathrm{P}($ a departure $) \approx i \mu \delta$
design of a phone system, a discrete time approximation

- approximation: discrete time slots of (small) duration δ

$$
\mathbb{P}(1 \text { new call }) \approx \lambda \delta ; \mathbb{P}(1 \text { call ends } \mid i \text { busy }) \approx i \mu \delta
$$

$\lambda=30$ call $/$ min te

$$
\mu=1 / 3
$$

3 minutes
$\pi_{i}(i \mu \mathbb{L})=\pi_{i-1} \times \lambda \nless$
90 calls

$$
\left.\begin{array}{l}
\lambda \pi_{i-1}=i \mu \pi_{i} \\
\pi_{i}=\pi_{0}^{n} \frac{\lambda^{i}}{\mu_{i}!}
\end{array} \prod_{i 0} \rightarrow \pi_{1} \rightarrow \pi_{2}=1 \Rightarrow \pi_{0}=1 / \sum_{i=0}^{B} \frac{\lambda^{i}}{\mu^{i} i!} \Rightarrow \pi_{i}=f\left(\beta_{1}\right), \mu\right)
$$

$$
B=90 \text { ? }
$$

- P (arriving customer finds busy system) is $\pi_{B} \quad \pi_{B} \leqslant 1 \% \Rightarrow B \geqslant 106$
calculating absorption probabilities
- absorbing state: recurrent state k with $p_{k k}=1$
bi
- what is the probability a_{i} that the chain eventually settles in $/{ }_{5}^{\prime}$ given it started in i ?

$$
i=5, a_{i}=0
$$

otherwise, $a_{i}=$?

$$
i=4, a_{i}=1
$$

(4) $\left\lvert\, \begin{aligned} & a_{1}=18 / 28 \\ & a_{2}=20 / 28 \\ & a_{3}=15 / 28\end{aligned}\right.$

- unique solution from $a_{i}=\sum^{m} p_{i j} a_{j} \quad \forall$ ii
\square

$$
\leftarrow\left\{\begin{array}{l}
a_{2}=0.2 a_{4}+0.8 a_{1} \\
a_{1}=0.6 a_{2}^{1}+0.4 a_{3} \\
a_{3}=0.3 a_{2}+0.5 a_{1}+0.2<a_{5}
\end{array}\right.
$$

strath s
$a_{s}=1$, and $a_{5^{\prime}=0}$ for the oik ar $a b^{2}=1$ oran stake
expected time to absorption

- find expected number of transitions μ_{i} until reaching 4 , given that the initial state is i
 for all others, $\mu_{i}=$?
$\frac{+1}{0.2}$ (4) dene: $\mu_{4}=0$

- unique solution from $\mu_{i}=1+\sum_{j} p_{i j} \mu_{j}$

mean first passage and recurrence times

- chain with one recurrent class; fix a recurrent state s
- mean first passage time from i to s :

$$
t_{i}=\mathrm{E}\left[\min \left\{n \geq 0 \text { such that } X_{n}=s\right\} \mid X_{0}=i\right]
$$

- unique solution to:

$$
\left\lvert\, \begin{aligned}
t_{s} & =0 \\
t_{i} & =1+\sum_{j} p_{i j} t_{j} \mathbb{ß} \quad \text { for all } i \neq s
\end{aligned}\right.
$$

- mean recurrence time of s

$$
t_{s}^{*}=\mathrm{E}\left[\min \left\{n \geq 1 \text { such that } X_{n}=s\right\} \mid X_{0}=s\right]
$$

- solution to:

$$
t_{s}^{*}=1+\sum_{j} p_{s,}, t_{j}
$$

$$
t_{9}^{*}=\begin{aligned}
& 0.2 t_{3} \\
& 0.6^{+} . t 5
\end{aligned}
$$

$$
\begin{aligned}
& 0.6 \times t 5 \\
& 0 . \hbar 08=0
\end{aligned}
$$

gambler's example

- a gambler starts with i dollars; each time, she bets $\$ 1$ in a fair game, until she either has 0 or n dollars.
- what is the probability a_{i} that she ends up with having n dollars?

- expected wealth at the end? $0 \cdot\left(1-a_{i}\right)+n \cdot a_{i}=n \times$
- how long does the gambler expect to stay in the game?
- $\mu_{i}=$ expected number of plays, starting from i
- for $i=0, n: \quad \mu_{i}=0$
- in general

$$
\left.\mu_{i}=1+\frac{f}{\sqrt{v}} \mu_{i+1}+\frac{1}{d}\right)^{2} \mu_{i=1}
$$

$$
\mu_{i}=1+\sum_{j} p_{i j} \mu_{j}
$$

- in case of unfavorable odds?

$$
r=\frac{1-f}{p} \quad \underset{a i}{ } \quad a_{i}=\frac{1-r^{e i}}{1-r^{n}}
$$

$$
\mu_{i}=\left(\frac{r+1}{r-1}\right)\left(i-n \times \frac{1-r^{i}}{1-r^{n}}\right)
$$

$$
\begin{aligned}
& i=0, a_{i}=0 \quad i=n, a_{i}=1 \downarrow \\
& 0<i<n, a_{i}=\text { ? }
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

