
Church Tutorial

CBMM Summer School 08.21.15
1

Probabilistic Programming

Programming + probabilistic modeling

Good representation for AI and cognition

Increasing interest over the past 10 years: BLOG, Bugs, PyMC,
ProbLog, Church, Stan, Venture…

Check out: http://probabilistic-programming.org/wiki/Home

https://moalquraishi.wordpress.com/2015/03/29/the-state-
of-probabilistic-programming/

2

http://probabilistic-programming.org/wiki/Home
https://moalquraishi.wordpress.com/2015/03/29/the-state-of-probabilistic-programming/
https://moalquraishi.wordpress.com/2015/03/29/the-state-of-probabilistic-programming/

The Church Language

Probabilistic program based on Scheme (based on Lisp based on the
Lambda calculus)

Compositional, code is data

Several inference engines

Under construction! * *

Founding paper:
Goodman, Mansinghka, Roy, Bonawitz and Tenenbaum, 2008

Check out forestdb.org

Check out Webppl
3

https://cocolab.stanford.edu/papers/GoodmanEtAl2008-UncertaintyInArtificialIntelligence.pdf
http://forestdb.org/
http://dippl.org/

Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc)

Examples:

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis, social inference)

Intuitive physics and intuitive psychology

4

Prerequisites and Set-Up

Open local installation of Church if you have one
(i.e. open ‘index.html’ under webchurch/online)

OR

Open https://probmods.org/]

AND

Open the ‘church tutorial’ document in the shared dropbox

AND

Play a game of Noisy Tomer Says

5

https://probmods.org/

Getting Started - Church Syntax

Similar to Scheme/Lisp

Based on λ-calculus, computing by applying
functions

Polish notation: (+ 2 2) instead of 2 + 2

6

Getting Started - Church Syntax

Math and logic: +, *, >, equal?, and, or…

Naming variables: define

Listing things: list

Quoting things: ‘ (THIS IS NOT DIRT)

If-ing things: (if condition
expression1
expression2)

7

Getting Started - Church Syntax

Functions: lambda

(define function-name
(lambda (var1 var2 …))
some-computation)

OR

(define (function-name var1 var2 …)
some-computation)

8

Getting Started - Church Syntax

Other useful notions (let, map, fold, case, …)

See:

https://www.probmods.org/

9

https://www.probmods.org/

Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc)

Examples:

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis, social inference)

Size principle (number game)

10

Forward sampling

Exchangeable Random Primitives (XRPs)

Distribution vs. Sampling

Examples:

Coin flipping

Gaussian samples

memoization

11

Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models <- Generative modeling

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc, etc.)

Examples:

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis)

Planning and social reasoning

Intuitive physics

12

Inference, Sampling and “query”

Sample generative models (‘run forward’)

Inference (‘run backward’)

© Python (Monty) Picture Ltd. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

13

https://ocw.mit.edu/help/faq-fair-use/

Inference, Conditioning, sampling and “query”

(query
generative-model
what-we-want-to-know
what-we-know)

Syntax:

“What we know” is the condition

This procedure defines a distribution

Setting condition=true is simply sampling
from the generative model

14

Rejection Query

(rejection-query
generative-model
what-we-want-to-know
what-we-know)

15

Implementing Rejection Query

1. Run the model forward

2. Check the condition

3. Accept or repeat

16

Rejection Query

Very general

Very simple

Very terrible

© Saturday Morning Breakfast Cereal. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

17

https://ocw.mit.edu/help/faq-fair-use/

MH-query

The backbone of inference in Church

(mh-query
num-samples lag

generative-model
what-we-want-to-know
what-we-know)

Random walk in program evaluation space

18

MH-query

Very general

Some decisions to make

Could take a while

Biased (burn in)

19

Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models <- Generative modeling

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc, etc.)

Examples:

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis)

Intuitive physics

Planning and social reasoning

20

Example – Coin Flipping

P(H) = 0.1P(H) = 0.5

Courtesy of xkcd. License CC BY-NC 2.5.

21

Example – Coin Flipping

Re-implement Josh’s example of the trick coin

New hypothesis: Biased coin

New new hypothesis: Markov coin

Newest hypothesis: Add your own!

Courtesy of xkcd. License CC BY-NC 2.5.

22

Example – Causal Inference

Courtesy of xkcd. License CC BY-NC 2.5.

23

Example – Intuitive Physics

Forward Sampling for Prediction

Inference

24

Example – Intuitive Psychology

25

Example – Intuitive Psychology

26

Example – Social Communication

London

Ben

1.00.3

27

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course
Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

