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Probabilistic Programming

Programming + probabilistic modeling

Good representation for AI and cognition 

Increasing interest over the past 10 years: BLOG, Bugs, PyMC, 
ProbLog, Church, Stan, Venture…

Check out:  http://probabilistic-programming.org/wiki/Home

https://moalquraishi.wordpress.com/2015/03/29/the-state-
of-probabilistic-programming/
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The Church Language

Probabilistic program based on Scheme (based on Lisp based on the 
Lambda calculus) 

Compositional, code is data

Several inference engines

Under construction! * * 

Founding paper:
Goodman, Mansinghka, Roy, Bonawitz and Tenenbaum, 2008

Check out forestdb.org

Check out Webppl
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Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc)

Examples: 

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis, social inference)

Intuitive physics and intuitive psychology
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Prerequisites and Set-Up 

Open local installation of Church if you have one
(i.e. open ‘index.html’ under webchurch/online)

OR

Open https://probmods.org/ ]

AND 

Open the ‘church tutorial’ document in the shared dropbox

AND

Play a game of Noisy Tomer Says 
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Getting Started - Church Syntax

Similar to Scheme/Lisp

Based on λ-calculus, computing by applying 
functions

Polish notation: (+ 2 2) instead of 2 + 2
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Getting Started - Church Syntax

Math and logic: +, *, >, equal?, and, or…

Naming variables: define

Listing things: list

Quoting things: ‘ ( THIS IS NOT DIRT)

If-ing things: (if condition 
expression1 
expression2)
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Getting Started - Church Syntax

Functions: lambda 

(define function-name 
(lambda (var1 var2 … ))
some-computation)

OR

(define (function-name var1 var2 …)
some-computation)
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Getting Started - Church Syntax

Other useful notions  (let, map, fold, case, …)

See:

https://www.probmods.org/
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Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc)

Examples: 

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis, social inference)

Size principle (number game)
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Forward sampling

Exchangeable Random Primitives (XRPs)

Distribution vs. Sampling 

Examples: 

Coin flipping

Gaussian samples

memoization
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Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models <- Generative modeling

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc, etc.)

Examples: 

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis)

Planning and social reasoning

Intuitive physics
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Inference, Sampling and “query”

Sample generative models (‘run forward’)

Inference (‘run backward’)

© Python (Monty) Picture Ltd. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Inference, Conditioning, sampling and “query”

(query
generative-model
what-we-want-to-know
what-we-know)

Syntax:

“What we know” is the condition 

This procedure defines a distribution

Setting condition=true is simply sampling 
from the generative model
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Rejection Query

(rejection-query
generative-model
what-we-want-to-know
what-we-know)
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Implementing Rejection Query

1. Run the model forward

2. Check the condition

3. Accept or repeat
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Rejection Query

Very general

Very simple

Very terrible

© Saturday Morning Breakfast Cereal. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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MH-query

The backbone of inference in Church

(mh-query
num-samples lag

generative-model
what-we-want-to-know
what-we-know)

Random walk in program evaluation space
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MH-query

Very general

Some decisions to make

Could take a while

Biased (burn in)
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Objectives for Tutorial

Become familiar with Church syntax

Run ‘forward’ a few models <- Generative modeling

Get sense of program/distribution equivalence

mem

Query operator and sampling (rejection sampling, mcmc, etc.)

Examples: 

Hypothesis-testing through coin-flipping example

Causal network inference (medical diagnosis)

Intuitive physics

Planning and social reasoning
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Example – Coin Flipping

P(H) = 0.1P(H) = 0.5

Courtesy of xkcd. License CC BY-NC 2.5.
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Example – Coin Flipping

Re-implement Josh’s example of the trick coin

New hypothesis: Biased coin

New new hypothesis: Markov coin

Newest hypothesis: Add your own!

Courtesy of xkcd. License CC BY-NC 2.5.
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Example – Causal Inference

Courtesy of xkcd. License CC BY-NC 2.5.
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Example – Intuitive Physics

Forward Sampling for Prediction

Inference
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Example – Intuitive Psychology

25



Example – Intuitive Psychology
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Example – Social Communication

London

Ben

1.00.3
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MIT OpenCourseWare
https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course
Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.
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