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Two notions of intelligence:
Classifying/recognizing/predicting data vs.
Explaining/understanding/modeling the world

« What's the difference between classification and explanation?
« What makes a good explanation?



Two notions of intelligence:
Classifying/recognizing/predicting data vs.
Explaining/understanding/modeling the world

Both notions have roles to play, but here I'll emphasize
explanation, because it is at the heart of human intelligence,
and much of current Al, machine learning, computational
neuroscience is so focused on classification.

(Why? Building machines that explain and understand is harder than
building machines that merely recognize and classify. Classification is
easier to map to neural networks and neural circuits.)

But not only are both probably essential, they can interact in
powerful, probably essential ways! We'll talk about how deep
neural networks can help model-based methods work more
quickly, efficiently — or how model-based methods can help
model-free methods become richer and more flexible.



Two notions of intelligence:
Classifying/recognizing/predicting data vs.
Explaining/understanding/modeling the world

« What's the difference between classification and explanation?

« What makes a good explanation?

Compact / unifying / nonarbitrary / "hard to vary”

Generative: Output is the world, not how we should perform a task.
Causal / actionable for an endless range of tasks, via planning
Compositional / flexible / extensible

Phenomena: the motion of
objects in the solar
system.

Contrast Kepler’s laws
© Wikimedia User: Theresa Knott. License CC BY-SA. This content is and Newton’s laws....

excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.
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1. The orbit of a planet is an
ellipse with the Sun at one

* Kepler's laws:  qewotoo

2. Aline segment joining a
planet and the Sun sweeps
out equal areas during
equal intervals of time.!"!

3. The square of the orbital
period of a planet is
proportional to the cube of

the semi-major axis of its
orbit.

Courtesy of Wikimedia user: Hankwang. License CC BY.

° Newton’s IaWS First law: When viewed in an inertial reference frame, an

object either remains at rest or continues to
move at a constant velocity, unless acted upon
by an external force.[2I[3]

Law of gravitational force: Second law: The vector sum of the external forces F on an
- = object is equal to the mass m of that object
= 4—2Q multiplied by the acceleration vector a of the
object: F = ma.
r _ Third law: When one body exerts a force on a second
m body, the second body simultaneously exerts a
1X M,
F=F=G— r2 force equal in magnitude and opposite in

Courtesy of Wikimedia user: Dennis Nilsson. License CC BY. direction on the first body.



Two notions of intelligence:
Classifying/recognizing/predicting data vs.
Explaining/understanding/modeling the world

« What's the difference between classification and explanation?

« What makes a good explanation?
« Compact/ unifying / nonarbitrary / "hard to vary”
« Generative: Output is the world, not how we should perform a task.
« Causal / actionable for an endless range of tasks, via planning
« Compositional / flexible / extensible

Newton but not Kepler explains...
Not just the orbits of planets, but other solar-
system objects.
Not just the motion of planets, but also the
apple | drop right here on Earth.
Why some things orbit other things, but not
others.

© Wikimedia User: Theresa Knott. License CC BY-SA. This content is * How you could get a man to the moon, and

excluded from our Creative Commons license. For more information,

see https://ocw.mit.edu/help/faqg-fair-use/. baCk agaln'
* How you could build a rocket or solar sail or

sling shot to escape Earth’s gravity,
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The brain as a generative modeling engine

Portrait photo removed due
to copyright restrictions.

Kenneth
Craik

(1914-1945)

The Nature of Explanation (1943):

One of the most fundamental properties of thought is its power of

predicting events.... It enables us, for instance, to design bridges
with a sufficient factor of safety instead of building them
haphazard and waiting to see whether they collapse... If the
organism carries a ‘small-scale model’ of external reality and of
its own possible actions within its head, it is able to try out various
alternatives, conclude which is the best of them, react to future
situations before they arise, utilize the knowledge of past events
in dealing with the present and future, and in every way to react
in @ much fuller, safer, and more competent manner to the
emergencies which face it. Most of the greatest advances of
modern technology have been instruments which extended the
scope of our sense-organs, our brains or our limbs. Such are
telescopes and microscopes, wireless, calculating machines,
typewriters, motor cars, ships and aeroplanes. Is it not possible,
therefore, that our brains themselves utilize comparable
mechanisms to achieve the same ends and that these
mechanisms can parallel phenomena in the external world as a
calculating machine can parallel the development of strains in a
bridge? 7



The big question

How does the mind get so much out of so little”?

Our minds build rich models of the world and make
strong generalizations from input data that is sparse,
noisy, and ambiguous — in many ways far too limited to
support the inferences we make.

How do we do it?



The big question

How does the mind get so much out of so little,
so quickly, so flexibly, on such little energy?



Visual scene
perception

But...
look around you!

Photos © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Photos © source unknown. Al rights reserved. This content is excluded from our Creative
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Where are the people?
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Learning and general

concepts
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What’s this?

© Omega Pacific. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Photo of rock climbing equipment
removed due to copyright restrictions.
See video.
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Photo of rock climbing equipment
removed due to copyright restrictions.
See video.
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Photos © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Concept learning is not simply
classification




Understanding events with common-
sense theories

5 ”

(Southgate and Csibra) (Heider and Simmel)

© unknown, attributed to work of V. Southgate and G. Csibra. All rights © University of Illinois Press. All rights reserved. This content is
reserved. This content is excluded from our Creative Commons license. excluded from our Creative Commons license. For more information,

For more information, see https://ocw.mit.edu/help/fag-fair-use/. see https://ocw.mit.edu/help/fag-fair-use/.
Source: Heider, F., & Simmel, M. (1944) "An experimental study in

apparent behavior." The American Journal of Psychology, 57, 243-259.

Intuitive physics: objects, forces and masses
Intuitive psychology: beliefs and desires
Intuitive sociology: us and them

Intuitive morality: good and bad
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Learning to play video games the way
people do?
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Mnih, V., et al. "Human-level control through deep reinforcement
learning." Nature 518, no. 7540 (2015): 529-533. © 2015.



Learning to play video games the way
people really do

Courtesy of sean dreilinger on Flickr. —ai— i
License CC BY-NC-SA.
S rhiTSsiOrd

© Activision. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faqg-fair-use/.
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Learning to play video games the way
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(Stadie, Levine, Abbeel 2015)

© Bradly Stadie. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing exploration in
reinforcement learning with deep predictive models." arXiv preprint arXiv:1507.00814 (2015).
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The big question

How does the mind get so much out of so little”?

Recovering the entire world around you, from a glance, in a
flash.

Learning a generalizable concept from just one example.
Discovering causal relations from just a single observed event.

Seeing forces, and seeing inside other minds, from just the
motion of a few two-dimensional shapes.

Learning to play games, solve problems, and act in a whole
new world — all in under one minute.

Understanding the words you're reading now.

The goal: A computational framework for understanding
how people make these inferences, and how they
can be successful, expressed in engineering terms.

24



The problems of induction

Abstract knowledge.
(Constraints / Inductive bias / Priors)

1. How does abstract knowledge guide learning and
inference from sparse data?

2. What form does abstract knowledge take, across
different domains and tasks?

3. How is abstract knowledge itself constructed, from
some combination of innate specifications and
experience?

25



The “Generative models” approach

1. How does abstract knowledge guide learning and

inference from sparse data? P(d | Pk
Bayesian inference in P(h|d)= (| mPh)
probabilistic generative models. ZP(a’ | h)P(hy)

h.eH

2. What form does that knowledge take, across
different domains and tasks?

Probabilistic Programs

3. How is that knowledge itself constructed?

26



The approach (cont’d)

4. How can learning and inference proceed efficiently and

accurately, even with very complex hypothesis spaces?

Sampling-based algorithms for approximate inference, e.qg.,
MCMC, sequential Monte Carlo (“particle filtering”),
importance sampling. Cost-sensitive sampling (“One and
done”). Fast initialization with bottom-up recognition models
(“Neural networks”).

5. How can probabilistic inferences be used to drive action?

Utility-based frameworks for decision and planning under
uncertainty and risk, such as Bayesian decision theory or
Markov decision processes (MDPs).

6. How could these computations be implemented in neural
hardware, or massively parallel computing machines?

Probabilistic interpretations of cortical circuitry and neural
population codes; stochastic digital circuits.

27



1990s-present: Cognition as
probabilistic inference

Visual perception [Yuille, Weiss, Simoncelli, Adelson, Richards, Freeman, Feldman,
Kersten, Knill, Maloney, Olshausen, Jacobs, Pouget, ...]

Language processing and acquisition [Brent, de Marken, Niyogi, Klein, Manning,
Jurafsky, Chater, Keller, Levy, Hale, Johnson, Griffiths, Perfors, Tenenbaum, Frank,
Piantadosi, O’'Donnell, Goodman...]

Motor learning and motor control [Ghahramani, Jordan, Wolpert, Koerding, Kawato,
Doya, Todorov, Shadmehr, Maloney, ...]

Reinforcement learning [Dayan, Daw,, Niv, Frank, Gershman, Gureckis, ...]
Memory [Anderson, Schooler, Shiffrin, Steyvers, Griffiths, McClelland, Gershman ...]
Attention [Mozer, Huber, Torralba, Oliva, Geisler, Yu, ltti, Baldi, Vul, ...]

Categorization and concept learning [Anderson, Nosfosky, Rehder, Navarro,
Griffiths, Feldman, Tenenbaum, Rosseel, Goodman, Kemp, Mansinghka, ...]

Reasoning [Chater, Oaksford, Sloman, McKenzie, Heit, Tenenbaum, Kemp, Goodman...]

Causal inference and learning [Waldmann, Sloman, Steyvers, Griffiths, Tenenbaum,
Yuille, Lu, Holyoak, Lagnado, ... ]
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Basic cognitive capacities as
intuitive probabilistic inference

Similarity (Tenenbaum & Griffiths, BBS 2001; Kemp & Tenenbaum, Cog
Sci 2005)

Representativeness and evidential support (Tenenbaum &
Griffiths, Cog Sci 2001)

Causal judgment (Steyvers et al., 2003; Griffiths & Tenenbaum, Cog.
Psych. 2005)

Coincidences and causal discovery (Griffiths & Tenenbaum,
Cog Sci 2001; Cognition 2007; Psych. Review, in press)

Diagnostic inference (Krynski & Tenenbaum, JEP: General 2007)
Predicting the future (Griffiths & Tenenbaum, Psych. Science 2006)
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Causes and coincidences:
Mere randomness or a hidden cause?
(Griffiths & Tenenbaum, Cognition 2007; Psych. Review, 2009)

Courtesy of American Psychological Association. Used with permission.
Source: Griffiths, T. L., and J. B. Tenenbaum. "Theory-Based Causal
Induction." Psychological Review 116, no. 4 (2009): 661-716.
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Bayesian measure of evidence: Jog P(d | latent )

P(d | random)

Random: Latent common cause:
N ®®® ® X ®®® ®
. uniform
uniform +

regularity




P(d | latent)

Bayesian measure of evidence: Jog
P(d | random)

Random: Latent common cause:

O ®®®®

uniform - -




Cancer clusters?

Judging the probability of a hidden environmental cause

Change in... Data Model
10

MNumber

o

Ratio ' . . : . o

Spread . ’ ) 5

Cluster of 2 5

Cluster of 8 - _' ) 5

Courtesy of American Psychological Association. Used with permission.
Source: Griffiths, T. L., and J. B. Tenenbaum. "Theory-Based Causal
Induction." Psychological Review 116, no. 4 (2009): 661-716.



Change in... Human data Bayesian model
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Everyday prediction problems
(Griffiths & Tenenbaum, Psych Science 2006)

You read about a movie that has made $60 million to
date. How much money will it make in total?

You see that something has been baking in the oven for
34 minutes. How long until it's ready?

You meet someone who is 78 years old. How long will
they live?

Your friend quotes to you from line 17 of his favorite
poem. How long is the poem?

You meet a US congressman who has served for 11
years. How long will he serve in total?

You encounter a phenomenon or event with an
unknown extent or duration, f,.,., at a random time or
value of t <t, ... What is the total extent or duration ¢,,.,?
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Fradicted t*

Priors P(t,,,.;) based on empirically measured durations or
magnitudes for many real-world events in each class:

Movie Grosses Foems Life Spans Movie Runtimes Representatives Cakes
=
%
=)
o
0 200 600 0 500 1000 O 40 80 120 0 100 200 0 30 60 0 60 120
Ir:uanra." total Ettu:I:i_’—:." ‘T:Dra." f:o:a.-‘ ”r:ora.l'

Median human judgments of the total duration or magnitude ¢, .., of
events in each class, given one random observation at a duration or
magnitude t, versus Bayesian predictions (median of P(t,.;.|f))-
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See Griffiths and Tenenbaum, “Optimal Predictions in Everyday Cognition.” Psychological Science 17, no. 9 (2006) 36



Learning words for objects

37



Word learning as Bayesian inference
(Xu & Tenenbaum, Psych Review, 2007)

© b
What is the right p" ior? "\,
What IS the right hypothesis space

How deg learners acquire that background
knowlgﬁge’? %: o

¢

e
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Word learning as Bayesian inference
(Xu & Tenenbaum, Psych Review, 2007)
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Property induction

Gorillas have T9 hormones.
Seals have T9 hormones.

Gorillas have T9 hormones.
Seals have T9 hormones.

Horses have T9 hormones.

“Similarity”
“Typicality”
“Diversity”

Anteaters have T9 hormones.

Gorillas have T9 hormones.
Chimps have T9 hormones.
Monkeys have T9 hormones.
Baboons have T9 hormones.

Horses have T9 hormones.

41



Experiments on property induction
(Osherson, Smith, Wilkie, Lopez, Shafir, 1990)

» 20 subjects rated the strength of 45 arguments:

X, have property P. (e.g., Cows have T4 hormones.)
X, have property P.
X5 have property P.

All mammals have property P. [General argument]

» 20 subjects rated the strength of 36 arguments:

X, have property P.
X, have property P.

Horses have property P. [Specific argument]
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Feature rating data
(Osherson and Wilkie)

* People were given 48 animals, 85 features, and asked
to rate whether each animal had each feature.

E.g., elephant:

'gray’ 'hairless’ 'toughskin'
'‘big" 'bulbous' ‘longleg’

tail' 'chewteeth' ‘'tusks'
'smelly’ ‘'walks' 'slow'
'strong’ 'muscle’ 'quadrapedal’
'Inactive’ 'vegetation' 'grazer
‘oldworld" 'bush' 'jungle'
'‘ground’  'timid" ‘'smart’
‘group’, ...
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The computational problem
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Cf. semi-supervised learning,

sparse matrix completion
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Hierarchical Bayesian Framework
(Kemp & Tenenbaum, Psych Review, 2009)

P(form)

F: f()rm Tree with species at leaf nodes

mouse

l P(structure | form)

squirrel

S: structure chimp
gorilla
O
S
l P(data | structure) ' E
— N M <t T o
L L L LL I c
mouse @ O O @ ?
. squirrel @ O O O 2
D: data chmp O @ 0@ ® @
gorila O @ @ @ ?



A graph-based prior

(c.f., diffusion model of genetic variation)

Let d;; = length ot the edge between objects i and j
(=0 1f 7 and j are not connected 1n ),

/= value of the feature for object i.

4 d.. 20

i ij

p(fs>ocexp£_lz(ﬁ‘f?> e foJ

A Gaussian prior ~ N(0, £), with ¥ =A"" (S).
(Zhu, Lafferty & Ghahramani, 2003)
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Results

chimpanzee

Cows have property P.
Elephants have property P.

Horses have property P.

r=0.96 r=0.9 r=0.95 r=0.96

squirrel  ouse

horse

cow
elephant

rhinoceros

seal

dolphin

r=0.85

LL
- L]

fg .," _4-: N . [ - -
CG ’: . "

A : X :

ﬂ "I":‘ ',
-
MOdel Courtesy of American Psychological Association. Used with permission.

Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Dolphins have property P.
Seals have property P.

Horses have property P.

(Osherson et al,

Smith et al)



Data

Results

Gorillas have property P.
Mice have property P.
Seals have property P.

All mammals have property P.

r=0.96

r=0.9

o

r=0.95

. §

Model

gorilla

chimpanzee

squirrel

r=0.96

horse

cow
elephant

rhinoceros

seal

dolphin

r=0.85

Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of

Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Cows have property P.

Elephants have property P.

Horses have property P.

All mammals have property P.
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Hierarchical Bayesian Framework

F: form Low-dimensional space of species
l gorilla
chimp
mouse
S: StI'U.CtU.I'C squirrel
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2 _ (@) 1 Idolphin " Killer whale
i - XP 2 || Xi xj || - seal . * blue whale
2 (@) + ofter humpback whale

[c.f., Lawrence; "beaver *walrus
Smola & Kondor]

. squirrel

‘rabbit - spider monkey
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Cows have property P.

Elephants have property P.
horse
gorilla Horses have property P.
COW
elephant
hi = =
chimpanzee rhinoceros r 096 r 09
‘.. ¢ -..
squirrel O ..f .:.‘..l.'
O] » :
= | F 2
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sea .‘ ?.5
dolphin . o« *
 dolphin r=0.97 r=0.6
’ oe® et
* seal %ol o
0o o F st "
N ..‘. .': *
.'$ o o '."0‘.: o
*squirrel - -
Courtesy of American Psychological Association. Used with permission.
‘mouse . - gorilla ‘elephant Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Chimpanzee Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.
‘rhinoceros
Gorillas have property P.
. cow Mice have property P.
Seals have property P.
“horse

All mammals have property P. o



Reasoning about spatially
varying properties
Geographic inference task: e.g., “Given that a certain kind of

native American artifact has been found 1n sites near city
X, how likely is the same artifact to be found near city Y?”

*Minneapolis "Boston
*Seattle
-Denver *Durham
*SanFrancisco
S r=0.83 r=0.74 r=0.84
SanDiego *Houston *Orlando .
D ':.. ]
AN LIS ¢ . *
- . s . - . o‘ ¢
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o L. - .
m . ..".'. . . “ .:"‘ . .- '.; .
— e, . ¥ ; S
= L « .t ctuvL 0T
Minneapolis Houston All cities

Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.



Do people learn explicit
structures of different forms?

A neural-network alternative:

(Rogers and McClelland, 2004; Saxe, McClelland, Ganguli,
2013)
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The need for inductive bias

* Learning from sparse data requires constraints
or a prior on the hypothesis space.

* An analogy: Learning a smooth probability
density by local interpolation (kernel density
estimation).

Assuming an appropriately
structured form for density
(e.g., Gaussian) leads

to better generalization
from sparse data.
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Beyond similarity-based induction

* Reasoning based
on dimensional

thresholds: (Smith
et al., 1993)

* Reasoning based
on causal

relations: (Medin
et al., 2004; Coley &
Shafto, 2003)

Poodles can bite through wire.

German shepherds can bite through wire.

Dobermans can bite through wire.

German shepherds can bite through wire.

Salmon carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Salmon carry E. Spirus bacteria.
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Different priors from different
kinds of causes

Chimps have T9 hormones. o
Taxonomic similarity

Gorillas have T9 hormones.

Poodles can bite through wire.

Jaw strength
Dobermans can bite through wire.

Salmon carry E. Spirus bacteria.

Food web relations
Grizzly bears carry E. Spirus bacteria.
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Property type
“has T9 hormones~  “can bite through wire”  “carry E. Spirus bacteria”

Causal Structure

taxonomic tree directed chain directed network
+ diffusion process  + drift process + noisy transmission
/O/\g Class A Cla?s D Class D
Class B Clags A Class A

/'O\O Class C Class F Class E

t
/O\Q(:g Class D Class C Class C Class B
Class E T Class G

Class F CIaESE
Class B
™0 Class G
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Properties Class G
ClassA @ O O 0 @ ® O000 ® C 000
ClassB @ O O @ @ ONON NONC) OO0 ee
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1D + 1D +

diffusion

Tree +
diffusion

drift

Reasoning with linear-threshold properties

r=0.02 r=0.96 r=0.88 r=0.95
o B 'l"':i..'! o "ti : ﬂ.’:'
-1-|‘F";"':‘:'{.1 'I"":
i g .
r=0.57 r=0.088 =023 r=0.3
Mt ..:'*::'f."& ":'* :. . ¥
S *'r'ri ) ‘5;' )
: . # -‘.'. : i ='lr' =
2 bt ™ ; i
L i ¥ o ot
—0.61 =0.38 =056 r=0.25
" 4-:'; :EE = L | . ¥
o g .‘.,' :_: o Wt
-: |=“¥ ¥ l . ii
LA il

Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Blok et al. Smith et al.
5 colleges Adapts to dark

Blok et al.

4 colleges Thick skin

Smith et al.

Elephant
Higpo

Camel

?

Lion

Cat

e.g., ‘has
skin that is
more
resistant to
penetration
than most
synthetic
fibers”
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Reasoning with two property types

“Given that X has property P, how likely is it that Y does?”

r=0.88 r=0.34
/OQ Herring S £ -
> O .
O &
Tuna S g_ i' j 1
Q/'O\ Mako shark m |’ PO
Sand shark
O/ \ r=0.19 =084
O/O Dolphin 02 | s . -
O Human @& |- )
QO Q | s .
29 | : i
o 0 . . . gheed *o
Kelp Qa o
Tree Web

Sand shark

(Shafto,’ Kemp, Kelp — Herring — Tuna —> Mako shark — Human
Bonawitz,

Coley & \ /

Tenenbaum) .
Dolphin
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Horse
Cow
Chimp
Gorilla
Mouse
Squirrel
Dolphin
Seal
Rhino
Elephant

“Common-sense reasoning’’ as sparse matrix completion. at the
heart of classical associationism, probabilistic or connectionist
models of semantic cognition, contemporary machine-learning

QOOOO0O0Cee

approaches to building general Al systems.
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SMARTER THAN YOU THINK

Aiming to Learn as We Do, a Machine Teaches Itself [N] ever- E nd i ng
Language
Learning
(NELL)

-
Ay O ™ 0 -
. ~verwm¢,';”);°,>

&> ““9‘32“9-0»- 22-mat-
I gipdne (160 S - .
P TIC Ehe New Pork Times October 5, 2010
uc‘.yt.»; Neg\ 01 %

Automated Learning
A computer system called NELL, for ¥ NELL is confident that Mr. Iger is the

Never-Ending Language Learning, attempts C.E.O., but also that Mr. Eisner, the

R to extract and evaluate facts from many former C.E.O., works at the company.
L ’
— snippets of text found on the Web. A

NELL'S TEAM Tom M. Mitchell, center, and, from left, Wiliam Cohen, Jayant Krishnamurtny di88ram of some facts NELL has gathered ~ Robert Iger  Michael Eisner

Sl BrvaKisial for the word "Disney” are shown below. _

: [CEO.| [worker]

iy STEVE LOHR - Facts for the word bl e

“Disney” Economic wedR
CATEGORIES | RELATIONS] o

-a Head-
Company G quarters Burbank

A S Pixar

Lohr, Steve. “Aiming to Learn as

We Do, a Machine Teaches ltself.” NELLis confident o O%0! P& /The Jungie Par - animation
_ that Disney is a S Book ABC Studios

The New York Times, October 4, company, and has  Fantasia | Rcter | Snow Miramax
weak evidence for . starred White f Acquired

201 O . other categories. Fr\undmg in movie Club N s i

mo

NELL correctly » < Pocahontas  Penguin
finds many Disney Ice Hollywood
movies, but records Princess  Muylan Pgﬁr ESPN  Records
Disney as the actor. THE NEW YORK TIMES

© The New York Times. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Never-Ending
Language
Learning
(NELL)

Text excerpt removed due to copyright restrictions.
See Lohr, Steve. “Aiming to Learn as We Do, a Machine Teaches ltself.”
The New York Times, October 4, 2010.
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Engineering common sense:
what, and how?
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The roots of common sense

Images of children playing removed due to copyright restrictions. Please see the
video or http://providencechildrensmuseum.blogspot.com/2012/05/loosen-up.html.

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene

understanding." PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
National Academy of Sciences, U.S.A.

Several other similar photos removed
due to copyright restrictions. See video.
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Engineering common sense:
what, and how?

What: The “common sense core”

Human thought is structured around a basic understanding of
physical objects, intentional agents, and their interactions
— intuitive physics (forces, masses...) and psychology

(desires, beliefs, plans. . ) [Spelke, Baillargeon, Gergeley, Csibra, Carey,
Kanwisher, Saxe, Dehaene, Tomasello...]

Develops early in infancy

Shared to some extent with other species

Enriched and extended massively in humans

The targets of understanding visual scenes, language, and action planning.

How can these internal models be realized computationally?
How can they be studied rigorously in behavior?

How are they instantiated in neural circuits?

How are they built, through evolution, development and learning?
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The development of object
knowledge in infancy

http://www.bbc.com/news/technology-19637175

© BBC. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.

https://www.youtube.com/watch?v=0jaxzURLylc

© Mike Zathureczky. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faqg-fair-use/.
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The development of object
knowledge in infancy

2-3 months (Baillargeon, Spelke et al)

{ m Violation detected
at each stage
|| Q- d] 3 months

Initial Concept:
¢
Contact/No contact

4-5 months

Habituation

5 months

Side view

Fromt view
tl 2 ] ] a] o t7 1] ]

Variable:
Type of contact

6.5 months

Test

Variable:
Amount of contact

12 months

Variable:
Shape of the box R

e

-
[y
Courtesy of Elsevier, Inc., http://www.sciencedirect.com.
‘ , Used with permission.
! Source: Baillargeon, Renée. "Infants' understanding of the
T T physical world." Journal of the Neurological Sciences 143,
no. 1-2 (1996): 199-199.
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How knowledge grows

Learning and abstraction as theory-building (or, the “child
as scientist”, not “data analyst”). Knowledge grows through
hypothesis- and explanation-driven interpretations of sparse
data, causal learning, learning theories, learning compositional
abstractions, learning to learn, exploratory learning, social
learning. [Carey, Karmiloff-Smith, Gopnik, Schulz, Feigenson, ...]

Suppot ”

11 months m

Saldity

ﬁ ~ .‘ﬂ';f = rﬁvﬁ‘_ -
! nislent Knowldge-violalion Labw barging the by

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/. 69
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Engineering common sense:
what, and how?

What: The “common sense core”

How: A modeling engine built on probabilistic programs
(Goodman, Mansinghka, Roy, Freer, ...) [See: probmods.org]
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Bayesian networks:
Probabilities on graph
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Bayesian networks:
- Probabilities on graphs
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-1 1. General-purpose languages for representing the
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Modeling the world with programs
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Model building as program learning

(define (unfold expander symbol)
(if (terminal? symbol)
symbol

(map (lambda (x) (unfold expander x))
(expander symbol) ))) -
(define rule-type (mem (lambda symbol)
(if (flip) ’terminal ’binary-production))
(define ipcfg-expander (DPmem 1.0 (lambda (symbol)
(if (eq? (rule-type symbol) ’terminal)
(multinomial terms term-probs)

(define (unfold expander symbol)
(if (terminal? symbol)

G symbol
/ Lj (map (lambda (x) (unfold expander x)) ‘
F — (expander symbol) )))

- )

(define get-symbol (DPmem 1.0 gensym))
}/‘ (define get-observation-model (mem (lambda (symbol) (make-die))))
(define ihmm-transition (DPmem 1.0 (lambda (state)
(if (flip) ’stop (get-symbol))

© Wikimedia User: Theresa Knott. License CC BY-SA.
This content is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.

Meiosis Ky
A\ | Rryy|
[ Qy\ [’ (define drawclass (DPmem 1.0 gensym))
RrYy T (define class (mem (lambda (obj) (drawclass)))) RRYy itf
secnecamon /7 Jillw - o
( llR 1 ( ] (define irm-mean Rryy H
\ YooY
’l! (mem (lambda (obj-classl obj-class2) ‘ﬁ;;? Ry
- | (normal 0.0 10.0) ))) =
I' w R' ) ( (define irm-value —
L/ A N T (mem (1ambda (obji obj2) y

(normal (irm-mean (class objl) (class obj2))

p(Model | Data) = p(Data| Model) p(Model)
p(Data)

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Probabilistic programs: Church, probmods.org
(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014)

Probabilistic Models of Cognition

Example: Reasoning about the Tug of War

Beturning to the earlier example of a series of tug-of-war matches, we can use query to ask a variety of different
questions, For instance, how likely is it that Bob is strong, given thar he's been in a series of winning teams? (Note
that we have written the winrer function slightly differently here, to return the labels ‘'teamt or 'teamz rather
than the list of team members. This makes for more compact conditioning statements.)

(define samples
(=h-guery 1828 12

(gefine strength (mem (Lambda (person) (gaussianm @ 1)2))
(define lazy (lambda {person) {flip [/ 1 333}
(gefine (total-pulling team)
{sum
(map
(Lambda (person) (if (lazy person) (F (strength person) 2) (strength person)))
team) )

(gefine (winner teaml team)
(if (*> (total-pulling team1) (total-pulling teamZ)) '"team1 'team2))

(stremngth "bok)

fand (eg? "team1 (winner '([bob mary) '(tom sue)))
(eq? "teaml (winmer '{bobk sue) '(tom Fim})iili)

(display (list "Expected stremgth: " (mean samples)))
(density samples "Bob strength” true)

From https://probmods.org
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Probabilistic programs: Church, probmods.org
(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014)

Probabilistic Models of Cognition

Example: Reasoning about the Tug of War

Beturning to the earlier example of a series of tug-of-war matches, we can use query to ask a variety of different

fWemewbel  Probabilistic Models of Cognition

than the list of ¢
(werine sapre  EXample: Causal Inference in Medical Diagnosis
(=h-guery 1
(define st This classic Bayesian inference task is a special case of conditioning. Kahneman and Tversky, and Gigerenzer and
colleagues, have studied how people make simple judgments like the following:
(gefine la
The probability of breast cancer is 1% for a woman at 40 who participates in a routine screening. [f a
[define (& woman has breast cancer, the probability is 0% that she will have a positive mammography. If a
{sum woman does not have breast cancer, the probability is 9.6% that she will also have a positive
':TE'F' ‘ mammography. A woman in this age group had a positive mammography in a routine screening.
t;:m‘ “What is the probability that she actually has breast cancer?
(defire (w What is your intuition? Many people without training in statistical inference judge the probability to be rather
{if = high, typically berween 0.7 and 0.9. The correct answer is much lower, less than 0.1, as we can see by evaluating
this Church query:
(strength
" (gefine samples =
{and (eg? (mh-guery 18& 18¢
(eq? (define breast-cancer (flip @.@1))
(display (list (define positive-mammogram (if breast-cancer (flip @.8) (flip &.896)))
[gensity sampl breast-cancer

positive-mammogram

]

b

&
(hist samples "breast cancer")

Tversky & Kabneman [1974) named this kind of judgment error base rate neglect, because in order to make the
correct judgment, one must realize that the key contrast is between the base rate of the disease, 0.01 in this case,
and the false alarm rate or probability of a positive mammogram given no breast cancer, 0.096. The false alarm rate
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Probabilistic programs: Church, probmods.org

(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014)

Probabilistic Models of Cognition

Probabilistic Models of

Example: Reasoning about t

Beturning to the earlier example of a seri

questions. For i Pl'ﬂbﬂbﬂi e

that we have

than the list of ¢
[(define sample: Example' C
(zh-guery 1@
Ly This classic Bayesian i
\ierine o1 colleagues, have studie
(define la The probability
[define (& woman has bre;
{sum woman does m
(map mammeography.
(Lami What is the prol
team
i What is your intuitio:
(define (w . !
(if .‘}((‘ high, typically berwee
this Church query:
(strength
(gefine samples
{and (eg? (mh-query 18@ 18@
(eq?
(display (list
(density sampl breast-cancer

H

1

(define breast-cancer (flip @.21))

(define positive-mammogram (if breast-cancer (flip @.8) (flip @.896)))

positive-mammogram

#
(hist samples "breast cancer")

Example: Inverse intuitive physics

W'e previously saw how a generative model of physics—a noisy, intuitive version of Newtonian mechanics—could
be used to make judgements about the final state of physical worlds from inirial conditions. ¥We showed how this
forward simulation could be used to model judgements about stability. We can also use a physics model to reason
backward: from final to initial states.

Imagine that we drop a block from a random position at the top of a world with two fixed cbstacles:

:s5et wp some bins on a floor:
(define (bins xmin xmax width)
(If (< zmax (+ xmin width])
ythe floor:
' ({"rect” #t (488 18)) (175 508)) )
;add a bin, keep going:
{pair (list "("rect" #t {1 18)) (list xmin 45%@}}
(bins (+ xmin width) xmax width)}))

:make & world with two fixed circles and bins:
(define world (pair '({{"circle" #t (6@)) (6@ 28@))
{pair "(("circle” #t (38)) (3@d 382))
(bins -1238@ 1082 25))))

;mzke a random block at the top:
(gefine (random-block) (list (list "circle" #F "(1@))
(list (uniform @ worldWiath) @))}

;3dd a random block to world, then animate:
(animatePhysics 1888 (pair ([random-block} world})

Tversky & Kahneman {1974) named this kind of judgment error base rate neglect, because in order to make the

correct judgment, one must realize that the key contrast is between the base rate of the disease, 0.01 in this case,
and the false alarm rate or probability of a positive mammeogram given no breast cancer, 0.096. The false alarm rate
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Probabilistic programs: Church, probmods.org
(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014)

Probabilistic Models of Cognition

Probabilistic Models of

Example: Reasoning about t

Beturning to the earlier example of a seri

questions. For i
that we have
than the list af ¢
[(define sample:
(=h-guery 1
[(define st
[(define la
(define (it
{sum

(map

(Laml

team

(define (w
(if (= (

(strength

fand (eq?
(eq?

(display (list
(density sampli

Probabilistic

Example: C

This classic Bayesian i
colleagues, have studie

The probabilicy
woman has bre;
woman does m
mammography.
What is the prol

What is your Intuitio:
high, typically berwee
this Church query:

(gefine samples

(mh-query 182 8@

breast-cancer

H

1

positive-mammogram

We previously saw h
be used to make judg
forward simulation ¢
backward: from final

Imagine that we drop

:set up some bins o

(define (bins xmim :

(if (< xmax (+ »m:
ythe floor:

'{ ({"rect” #

jadd a bin, ki

{pair (list '

(bins (-

:make & world with *
(define world (pair

;mzke & random blocl
(gefine (random-blo

;add a random block
(animatePhysics 1@&

(define breast-cancer (flip @.21))

(define positive-mammogram (if breast-cancer (i

#
(hist samples "breast cancer")

Tversky & Kahneman (1974) named this kind of ju

correct judgment, one must realize that the key con
and the false alarm rate or probabilivy of a positive ms

______________________________________________________ physics

Probabilistic Models of Cognition

Social Cognition

Joint inference about beliefs and desires

In social cognition, we often make joint inferences about two kinds of mental states: agents
world and their desires, goals or preferences. "We can see an example of such a joint inferen
machine scenario. Suppose we condition on rwo cbservations: that Sally presses the buton o
results in a cookie. Then, assuming that she knows how the machine works, we jeintly infer
cookie, that pressing the button twice is [ikely to give a coeckie, and that pressing the button «
give a cookie,

::3Told: choose-action

End

(gefine (action-prior) (if (flip @.7) "(a) (pair 'a (actien-prior))))

(gefine (sample)
{rejection-guery

[define buttons->gutcome-probs {mem (lambds (buttons) (dirichlet '{1 1333312
(define (vending-machine state action)
(multinomial '(bagel cookie) {buttons-=outcome-probs action)))

[define goal-food (uniform-draw °(bagel cookie)))
(define goal? (lambda (outcome) [equal? outcome goal-food)))

[list (second (buttons->putcome-probs '(a a)))
(second (buttons-*outcome-probs '{a)l)
goal-food)

(and (equal? (wending-machine 'state '(a a)) 'cookie)
(equal? (choose-action goal? vending-machine 'state) '(a a)) )

by

(gefine samples (repeat 580 sample))

(hist {map first samples) "Probability that (a a) gives cookie")

(hist {map second samples) "Probability that {2) gives cockie")

(hist {map third samples) "Coal probabilities") 78
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Probabilistic programs: Church, probmods.org
(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014)

Probabilistic Models of Cognition

Probabilistic Models of

Probabilistic Models of Cognition

We previously saw h

Example: Reasoning about t be used to make judg

forward simulation ¢
Returning to the earlier example of a seri backwerd: from: fmal S()Clal Cugmtmn
questions. For Prnbabﬂisﬁ ™ Imagine that we drog

that we have Joint inference about beliefs and desires

than the list of ¢ - e
[define (blns
et ke Example: C (if (< xfax ( inferences abour two kinds of mental states: agents
:m_quer_.,.plg :Ehf fie nees. We can see an example of such a joint inferen
This classic Bayesian i 1add|a bi on two observations: that Sally presses the button
(gefine gt colleagues, have studie (pai Eii Ehe knows how the machine works, we jointly infer
tdetine 1 ikely to give a cockie, and that pressing the button .
] The probability jmake a wolld W
rdefine |t woman has bre; (define wolld (
(stm w does m ::3Told: choose-action
(mag mammegraphy. -
s What is the prot imake 2 rapdom blocl (define (action-prior) (if (flip @.7) '(a) (pair 'a (action-prior))))
tegm (gefine (rgndom-blo
tdaPlie i What is your intuitio: cefine (szmple)
(if > (: high, typically betwee ;add a random block {rejectign-guery
Ais Church guery: ARl 10 [define puttons->gutcome-probs (mem (lambda (buttons) (dirichlet '{1 1333}
[strength (define |(vending-machine state action)
(gefine samples (multijpomial "(bagel cockie) {buttons->outcome-probs sction)))
(and (egl (mh-gquery J@@& 182
(eq? (define preast-cancer (flin 8.810) [define [oal-food (uniform-draw °(bagel coockie)))
i 7 7 - b
B . (define Jositive-mamogram (if breast-cancer {1 (define [goal? (lambda (outcome) [equal? outcome goal-food)))
(display (ligt . )
(density samgli breast-chncer [list (gpcond (buttons->putcome-probs '(a a)))
(spcond (buttons-*outcome-probs '{a)l)
positivefmamnogram 1-food)
H
b ; . [and (equal? (vending-machine 'state '(& a)) 'cookie)
(hist samolgs "breast cancer”) (equal? (choose-action gosl? wending-machine 'state) '{a a)) J
N
Tverslqt & Kahneman {1974) na:med this kind of ju (define samples (repeat 500 sample))
correct judgment, one must realize that the key con (hist {map first samples) "Probability that (a a} gives cookie")
and the false alarm rate or probability of a positive mz (hist {map second samples) "Probability that {2) gives cockie")
(hist {map third samples) "Coal probabilities") 79
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Engineering common sense:
what, and how?

What: The “common sense core”

How: A modeling engine built on probabilistic programs
(Goodman, Mansinghka, Roy, Freer, ...) [See: probmods.org]

Representations: the “game engine in your head”
(graphics engine, physics engine, planning engine)

By YO | gt | Grvaim | o [

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Probabilistic programs

Photo of young students in

Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene
understanding."” PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013

National Academy of Sciences, U.S.A. \ /

crosswalk, with crossing guard, physics
removed due to copyright T T=—=————————-

restrictions. \% :

World Agent |

|

state state l

|

N/ :

perception :

!

| |

v !

— |

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Bel |efS DeSI res |

!

|

, |

physics planning !

World state (t) — World state (t+1) :

! .

graphics :

Actions = - - - -

Image (1) Image (t+1)
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Engineering common sense:
what, and how?

What: The “common sense core”

How: A modeling engine built on probabilistic programs
(Goodman, Mansinghka, Roy, Freer, ...) [See: probmods.org]

Representations: the “game engine in your head”
(graphics engine, physics engine, planning engine)

Algorithms: “inference programs”

Really fast: Bottom-up guesses based on cached experience.
(Perception)

Fast. Forward simulation (Prediction, imagination, top-down percepts)

Slower. Sampling by reverse simulation. (Thinking, reasoning)

Slow (& really slow, & really really slow):. Stochastic search (Learning,
development, evolution)
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The intuitive physics engine
(Battaglia, Hamrick, Tenenbaum, PNAS 2013)

Courtesy of National Academy of Sciences, U. S. A. Used with permission.

Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene understanding." PNAS
110 no. 45 (2013): 18327-18332 Copyright © 2013 National Academy of Sciences, U.S.A.




Vision as inverse graphics

]

World state (t)

Prob. approx. rendering

|

Image (t)

Courtesy of National Academy of Sciences, U. S. A. Used with permission.

Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene understanding." PNAS
110 no. 45 (2013): 18327-18332 Copyright © 2013 National Academy of Sciences, U.S.A.
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Vision as inverse graphics

jL. Markov Chain
Scene

Prob. approx. rendering

l

Image

Metropolis-Hastings

probability

Log

1000 1200

Time

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene
understanding."” PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
National Academy of Sciences, U.S.A.

Monte Carlo (MCMC):
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Vision as inverse graphics

, ~

Markov Chain
Monte Carlo (MCMC):
Metropolis-Hastings

Scene
Prob. approx. rendering
Image E
=
E
8
§D g— 1DIDD 12IDG

Courtesy of National Academy of Sciences, U. S. A. Used with permission. .
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene T|me
understanding."” PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013

National Academy of Sciences, U.S.A.
86



Architecture (ukamietal, cvPR 2015)

Stochastic Scene
Generator

ls ~ P(S)

Approximate Random
Renderer IR

Courtesy of Ilker Yildirim. Used with permission.

From Yildirim, Kulkarni, Friewald, and Tenenbaum (2015)
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Architecture (ukamietal, CvPR 2015)

Stochastic Scene

Generator o
Summary statistic
ls ~ P(S) (Feature vector)
Approximate
Renderer lll_} ( ﬁ:%
u{fﬂjl ly{:fg}
Stochastic
Comparator

\

p(v(Ip),v(IR))

ABC distance
function (LI)
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Architecture (ukamietal, CvPR 2015)

Convolutional neural network

Stochastic Scene
Generator

ls ~ P(S)

Approximate

Renderer
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Generalizing across  amietal, cvpr 2015)
viewing conditions

Observed Inferred model Inferred model
Image re-rendered with re-rendered with
novel poses novel lighting

@
¥

¢o
OV
ve

Courtesy of Tejas Kulkarni. Used with permission.

3
¢
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Human body pose estimation

Stochastic Scene
Generator

ls ~ P(S)

Approximate

Renderer

Stochastic
Comparator

\

p(v(Ip),v(IR))

ABC distance
function (LI)

Courtesy of Tejas Kulkarni. Used with permission.

(Kulkarni et al., CVPR 2015)
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Human body pose estimation

Baseline
BN OQOur Method |4

|

i L

Arml

Arm2 Fotl Fat2

Courtesy of Tejas Kulkarni. Used with permission. (Kulkarni et a|_’ CVPR 201 5)
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Inferring generic 3D shape

ulkarni. Used with permission. (KUlkarni et al., CVPR 201 5)



I_

— _face_id
_/éhape Texture %
[ -Nose ~Nose
| -Eyes || ~Eyes |
. ~Outline /\ - Outline /
- Mouth” - Mouth/
'nght I F’Dse. AETTTU N
Apprnmma’te‘ T
renderer ‘
iy
Sample

Faster (and more brain-like) inference

(Yildirim, Kulkarni, Freiwald,
Tenenbaum, Cog Sci ‘15, in prep)

Learning to do inference a la Helmholtz
machine (Hinton et al., 1995):
- Initialize inference with recognition
model (a deep neural network).
- Trained in a self-supervised way

from fantasies of the generative model.
)

00 1

-2e+06

Log Likelihood

=== initialization with recognition model === random initialization

-4e+06

40 80
Number of MCMC sweeps

Courtesy of Ilker Yildirim. Used with permission.
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Psychophysics and neural data
(Yildirim, Kulkarni, Freiwald, Tenenbaum, Cog Sci ‘15, in prep)

Yoow
AR
Woee

Courtesy of Ilker Yildirim. Used with permission.

Input

Bottom-up
pass

Full
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Psychophysics and neural data
(Yildirim, Kulkarni, Freiwald, Tenenbaum, Cog Sci ‘15, in prep)

(Freiwald
and Tsao,
2010)

Courtesy of Ilker Yildirim. Used with permission.

Bottom-up
pass IIlpllt

Full

v
@
¢
€
@
9
2

TCL FFL Latent variables

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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The intuitive physics engine
L(Battaglia, Hamrick, Tenenbaum, PNAS 2013)

C ‘Zl_; Prob. :1, | 3
‘:ﬂn approx. """'ﬁ“""f] -
J—ﬂ Newton “—lﬂﬂ - P%

. World state (t-1) —> World state (t) —> World state (t+1)

Prob. approx. rendering

A\ 4 ‘l’ \ 4

Image (t-1) Image (1) Image (t+1)
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The intuitive physics engine
(Battaglia, Hamrick, Tenenbaum, PNAS 2013)

Prob.

approx. A
Newton % %

. World state (t-1) —> World state ) —> World state (t+1)

Prob. approx. rendering

A\ 4 ‘l’ \ 4

Image (t-1) Image (1) Image (t+1)

o = state uncertainty
¢ = latent force magnitude
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Human (1-7, normalized)
.

o
)

The intuitive physics engine
(Battaglia, Hamrick, Tenenbaum, PNAS 2013)

Probabilistic IPE

! s
0
* = {Fﬁ
Courtesy of National Academy of Sciences, U. S. A. Used with permission.
_I_ -|- Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene
understanding."” PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
_I_ National Academy of Sciences, U.S.A.
-| —
: : : : Fall : 1.0 Ground truth physics
00 02 04 06 08 | L
Model (avg. proportion fallen) 08 | S B

- 0.6}

- ||
0.4t |
| |
0.27
. . _ Fall—»
00 02 04 06 08

Model (avg. proportion fallen) 99

c=0.2
$»=0.2




The intuitive psychology engine

physics
- T T T=—=—=="777719 Photos (1) from TV show The Office
v I (2) young students in crosswalk, with
World Agent ! crossing guard, removed due to
I . . .
state state : copyright restrictions.
|
N :
perception :
|
R— i ................................. .
| o
i . . N
| Beliefs Desires | |
| |
| N/ '
: P
§ planning |
i o
i i l
| |
| : |
; Actions = - - - —=-
- agent
T 100




People

Model

- F= === ——— -1
Goal inference as v |
- I - World Agent I
inverse planning sate  stato :
(Baker, Saxe, Tenenbaum, 2009) \N / |
1 perception :
¢ A r=0.98 - _)" i '
i W I
\LLLARLRNNRNLTY] Q
e g Beliefs  Desires | |
RUT l\““‘ o |
.“““ \ / |
- 0 : planning I
0 Iiodel 1 agent | '
v |
T A A A & A :
79, " §d | 1 14C 1 Actions — — — = !
a I 1a Cl%s 3iso7ihd] gco7dd
B | Bl 1 gl 1 Bi
] . 1I. 1 U(CI,S) — R(S) o C(Cl)
v ;' v ]
; T e oFreereth,) T TT O Py R(S): large reward for
3 10113 3 7 10113 1|3 7_101 14 3 7 1011315 achieving goal
EL a4 PO hrmermanten)] Ol C(a): small cost per step
°3 01139 7 6113 %37 d01 14 %37 1011315
Tlme step Time step Time step Time step

© Christopher Baker. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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= Can=~

Joint inference of mmmmmmm - physies.

|
| | I
beliefs and desires World ~ Agent |
(Baker, Saxe, Tenenbaum, Cog Sci 2011, state state |
in prep) N/ I
perception :
| |
v l
inference ' Beliefs Desires :
|
N/ |
planning |
I Model '
: I Pecple l :
0 Actions = = = = -
_ L M _N agent !
Desires Initial Beliefs
—_—
1 7 1 7 1 7 1
5 5 5
Ml mw.. OELLIL..J 3 OELL.L..J ?LJUﬂO'ihuLJ
K L M L M N K L M L M N K L ™M L M N K L M L M N

© Christopher Baker. All rights reserved. This content is excluded from our Creative
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Joint inference of beliefs and desires
(Baker, Saxe, Tenenbaum, Cog Sci 2011, in prep)

Desire Inference Belief Inference
g_ r=0.95 05t r=0.91
© O 1% © 04 Eﬁ- I
g 2 | g0s o ¥ |
o 3 % | a E _
7 1 1 | | |
3 05 1 2 3 4 5 6 7 0 02 04 06 0.8
1 0 BToM BToM
K L M L M N

Initial Raliafe

K
7 1 g 1 7 1 7 1
5 II II 5 II 5 II I
3 05 3 05 3 05 3 05
1 0 1 0 1 0 1 0
K L M L M N K L M L M N K L M L M N K L M L M N

© Christopher Baker. All rights reserved. This content is excluded from our Creative
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Human (z-scores)

If you bump the table...

T e

Jak> . ‘

. ® 10 V) 12
@
-1.5
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Model (z-scores)

100% Model simulates table “bumps”
integrating over a range of force
red magnitudes and directions. (R =0.84)
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Varying objects, constraints, forces

Uncued forces

# Cued force
-l ® Uncued force

People (1-7,
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Probabilistic programs for model building
(“program-learning” programs)

b ~

—
|
"l - E ' = . =
™~
[
=l ] S
I . ]
i

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene understanding." PNAS
110 no. 45 (2013): 18327-18332 Copyright © 2013 National Academy of Sciences, U.S.A.

/ physics \

World state (t) —> World state (t+1) ...

graphics

\Image ) Image (t+1) /




The child as scientist

Learning as “theory building”, not “data analysis”.
Knowledge grows through hypothesis- and explanation-driven
interpretations of sparse data, causal learning, learning theories,
learning compositional abstractions, learning to learn,

exploratory learning, social learning.
[Carey, Karmiloff-Smith, Gopnik, Schulz, Feigenson...]

. ~

Salidity

N NN e e

bl Enowiedae-vodahon 1 i DN Thas | ;]

© AAAS. All rights reserved. This content is excluded from our Creative Commons
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Explaining the dynamics of
development? (w/ T. Ullman, Spelke, others)

Habituation event

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Sommerville, Jessica A., Amanda L. Woodward, and Amy Needham. "Action

experience alters 3-month-old infants' perception of others' actions." Cognition 96,
no. 1 (2005): B1-B11.

Observed Incompatible Compatible
behaviour outcome outcome
12 months | ) ( (
\_&]_/ @0
15 months |

'j a
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Explaining the dynamics of development? (w/ T. Uliman,
Spelke, others)

Habituation event New goal event New path event

9 months

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Sommerville, Jessica A., Amanda L. Woodward, and Amy Needham. "Action
experience alters 3-month-old infants' perception of others' actions." Cognition 96,
no. 1 (2005): B1-B11.

Capture different knowledge stages
with a sequence of probabilistic
programs?

Explain the trajectory of stages as
rational statistical inference in the
space of programs?

15 months

Violation detected
at each stage

3 months

Initial Concept: r )
Contact/No contact

5 months

Variable:
Type of contact

|

6.5 months

Variable:
Amount of contact

12.5 months

Variable:
Shape of the box

Courtesy of Elsevier, Inc., http://www.sciencedirect.com.

Used with permission.

Source: Baillargeon, Renée. "Infants' understanding of the
physical world." Journal of the Neurological Sciences 143,

no. 1-2 (1996): 199-199. .

© Psychology Press. All
rights reserved. This content

] is excluded from our Creative
{ Commons license. For more

information, see https://ocw.

mit.edu/help/fag-fair-use/.
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Conclusion

What makes us so smart?

1. How we start: Common-sense core theories of intuitive physics and
intuitive psychology.

2. How we grow: Learning as theory construction, revision and
refinement.

The tools of probabilistic programs and program induction are beginning
to let us reverse-engineer these capacities, with languages that are:
— Probabilistic.
— Generative.
— Causally structured

— Compositionally structured: flexible, fine-grained dependencies,
hierarchical, recursive, unbounded

We have to view the brain not simply as a pattern-recognition device, but as a
modeling engine, an explanation engine — and we have to understand how
these views work together.

Much promise but huge engineering and scientific challenges remain... full of
opportunities for bidirectional interactions between cognitive science,
neuroscience, developmental psychology, Al and machine learning.
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