MVPA

Opening a new window on the mind via fMRI

Image removed due to copyright restrictions. Please see the video.

Rebecca Saxe
Summer Course 2015

THINKING ABOUT THOUGHT

How much blame?

© University of Illinois Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Heider, F., \& Simmel, M. (1944) "An experimental study in apparent behavior." The American Journal of Psychology, 57, 243-259.

This image is in the public domain.
Source: Photographs of the IMF 2007 Annual Meetings, International Monetary Fund Photograph by Stephen Jaffe.

THEORY OF MIND The False Belief Task

THEORY OF MIND The False Belief Task

THINKING ABOUT THOUGHT

Anne made lasagna in the blue dish. After Anne left, Ian came home. He threw out the lasagna and made spaghetti in the blue dish and replaced it back in the fridge.

Anne thinks the blue dish contains...

A volcano erupted on this Caribbean island three months ago. Barren lava rock is all the remains. Satellite photos show the island as it was before the eruption.

The photo shows the island as...

 Physical

Individual participants

Body

THINKING ABOUT THOUGHT

THINKING ABOUT THOUGHT

FMRI \& COGNITION Beyond "involvement"

Representations

Population codes of features/ dimensions
Computations
Transformation

Albert really wants this ski trip to be a success. Though the ice looks quite thin at points, Albert thinks the pond is sufficiently frozen over to support a person's weight. He tells his girlfriend to walk out on the ice.

During a trip Grace is irritated by her friend's constant whining. Grace sees a container labeled "toxic poison", so she thinks the powder is poison. She puts the powder in her friend's coffee.

Activity shows: both stories describe thoughts Theory of Mind:

Who thinks what?
Why? (i.e. what reasons? what motivations?) With what consequences?

FMRI \& COGNITION Beyond "involvement"

Traditional analysis

Univariate
avg magnitude across voxels "Forward" / "Encoding" direction Region scale
Stimulus "Type"

"MVPA" analysis

Multivariate relative magnitude across voxels "Reverse" / "Decoding" direction Sub-region scale Within type features

VERSION \#1 Haxby style correlations

Experiment 1A Methods:

Your family is over for dinner. You wish to show off your culinary skills. For one of the dishes, adding peanuts will really bring out the flavor.

You grind up some peanuts, add them to that dish, and serve everyone.

Your cousin, one of your dinner guests, is severely allergic to peanuts.

You had absolutely no idea about your cousin's peanut allergy when you added the peanuts.

How much blame should you get?

Minimal pair 4s; 2-4 words changed

You knew about your cousin's peanut allergy when you added the peanuts.

VERSION \#1 Haxby style correlations

Generalize across heterogenous items: (NB every item is unique)

VERSION \#1 Haxby style correlations

Generalize across heterogenous items: (NB every item is unique)

VERSION \#1 Haxby style correlations

Same distinction, new implementation

Knowing

You knew about your cousin's peanut allergy when you added the peanuts.

Unknowing

You had absolutely

no idea about your cousin's allergy when you added the peanuts.

Experiment 1A

True Belief

The container is labeled "toxic", so Grace believes that the white powder is a toxic substance.

False Belief
The container is labeled "sugar", so Grace believes that the white powder is regular sugar.

Experiment 1B\&C

VERSION \#1 Haxby style correlations

One measurement per individual

Knowing

You knew about your cousin's peanut allergy when you added the peanuts.

Unknowing

You had absolutely

no idea about your cousin's allergy when you added the peanuts.

True Belief
The container is labeled "toxic", so Grace believes that the white powder is a toxic substance.

False Belief
The container is labeled "sugar", so Grace believes that the white powder is regular sugar.

Knowing vs Unknowing

FMRI \& COGNITION Beyond "involvement"

Haxby-style correlations:

- robust but simple measure
- sensitive to minimal manipulation
- generalises across heterogenous stimuli
- stable in participant (relates to ID)
- different across regions

VERSION \#1A A few more Haxby style correlations

Two orthogonal differences:

VERSION \#1A A few more Haxby style correlations

Two orthogonal differences:

VERSION \#1A A few more Haxby style correlations

Two orthogonal differences: Negative

Positive

VERSION \#1A A few more Haxby style correlations

Two orthogonal differences:

Good vs Bad

FMRI \& COGNITION
 Beyond "involvement"

Haxby-style correlations:

- robust but simple measure
- sensitive to minimal manipulation
- generalises across heterogenous stimuli
- stable in participant (relates to ID)
- different across regions
- multiple orthogonal distinctions

BUT

- binary, no info about 'why'

FMRI \& COGNITION Beyond "involvement"

More general idea:
Response pattern ->
Vector ->
Point in voxel space

- Train classification
- typically linear
- Independent test trials

VERSION \#2
 Classifying single trials

More general idea:
Response pattern ->
Vector ->
Point in voxel space

- Train classification
- typically linear
- Independent test trials

DV: classification accuracy

VERSION \#2 Classifying single trials

Bella poured the sleeping potion into Ardwin's soup and went into the next room, where her sister, J en, was waiting. They held their breaths while Ardwin started to eat.

Modality

Bella stared through the secret peep hole and waited. In the bright light, Bella saw his eyes close and his head droop.

Quality

Bella grinned from ear to ear. "The potion worked!" she exclaimed.

Not binary:

VERSION \#2 Classifying single trials

Bella poured the sleeping potion into Ardwin's soup and went into the next room, where her sister, J en, was waiting. They held their breaths while Ardwin started to eat.

Modality

Bella stared through the secret peep hole and waited. In the bright light, Bella saw his eyes close and his head droop.

Bella pressed her ear against the door and waited. In the sudden quiet, Bella heard the spoon drop and a soft snore.

Quality

[^0]Bella grinned from ear to ear. "The potion worked!" she exclaimed.

VERSION \#2
 Classifying single trials

Distinct information across regions

Not binary
 Not redundant

VERSION \#2
 Classifying single trials

Distinct information across regions

Not binary
Not redundant

FMRI \& COGNITION
 Beyond "involvement"

Classification analyses

- sensitive to minimal manipulation
- generalises across heterogenous stimuli
- different across regions
- multiple orthogonal distinctions
- item-specific, continuous (not binary)

BUT

- tests hypotheses / features sequentially

VERSION \#3 Representational (dis)similarity matrices

After an 18 hour flight, Alice arrived at her vacation destination to learn that her baggage (including necessary camping gear for her trip) hadn't made the flight. After waiting at the airport for 2 nights, Alice was informed that the airline had lost her luggage altogether and wouldn't provide any compensation.

Sarah swore to her roommates that she would keep her new diet. Later, she was in the kitchen getting a glass of water, and took a bite of a cake she had bought for their dinner party the following evening. Sarah's roommates arrived home to find that she had eaten half the cake and broken her diet.

For the months before her marathon, Dianne trained even harder than usual, running extra miles and adding strenuous weight sessions at the gym. Dianne hoped to shave at least 10 minutes off of her previous best of $3: 14$. On race day, she came in 23rd in her age group with a new personal record of 2:46.

Brenda was texting while driving. She went through a red light and hit a boy on a bike. She jumped out of the car to see if the boy was okay. He had a couple scrapes, but, somehow, was otherwise okay. Brenda put away her phone and vowed to never text while driving again.

20 AFC
Jealous
Disappointed Devastated Embarrassed Disgusted Guilty Annoyed
Apprehensive
Terrified
Furious
Lonely
Surprised
Nostalgic
Content
Impressed
Proud
Excited
Hopeful
J oyful
Grateful

VERSION \#3

Representational (dis)similarity matrices

Whole brain searchlight

Sig. Class
n=22 FWE p<.05, k>25

VERSION \#3

Representational (dis)similarity matrices

Whole brain searchlight

VERSION \#3

 Representational (dis)similarity matrices

 Representational (dis)similarity matrices}

Representation

After an 18 hour flight, Alice arrived at her vacation destination to learn that her baggage (including necessary camping gear for her trip) hadn't made the flight. After waiting at the airport for 2 nights, Alice was informed that the airline had lost her luggage altogether and wouldn't provide any compensation.

Event features

Was this situation caused by a person or some other external force?
Was this situation caused by Alice herself? Does the situation refer to something in her past?

Was Alice interacting with people?
Did this situation affect her relationships with other people?

VERSION \#3

Representational (dis)similarity matrices

VERSION \#3

Representational (dis)similarity matrices

Representational dissimilarity

Classification of test stories

VERSION \#3

Representational (dis)similarity matrices

Correlation to neural RDM

Representational dissimilarity

Classification of test stories

FMRI \& COGNITION
 Beyond "involvement"

RDM analyses

- parameter free fit
- models of different complexity
- sensitive to overall "structure" of representation
- direct comparison of multiple hypotheses

BUT

- less info about specific features

FMRI \& COGNITION
 Beyond "involvement"

Traditional analysis
Univariate
avg magnitude across voxels
"Forward" / "Encoding" direction Region scale Stimulus "Type"
"MVPA" analysis
Multivariate
relative magnitude across voxels
"Reverse" / "Decoding" direction
Sub-region scale
Within type features
Key problems:
Null results
Theory of concepts

FMRI \& COGNITION
 Beyond "involvement"

Traditional analysis
Univariate
avg magnitude across voxels
"Forward" / "Encoding" direction Region scale Stimulus "Type"
"MVPA" analysis
Multivariate relative magnitude across voxels
"Reverse" / "Decoding" direction
Sub-region scale
Within type features
Future Applications
Conceptual change in children Combine with dynamics

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course

Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: Not binary Not redundant

