Lectures 22-26 are from the Fall 2009 version of the course.
LEC # | TOPICS | LECTURE NOTES |
---|---|---|
1 | Probabilistic models and probability measures | (PDF) |
2 | Two fundamental probabilistic models | (PDF) |
3 | Conditioning and independence | (PDF) |
4 | Counting | (PDF) |
5 | Random variables | (PDF) |
6 | Discrete random variables and their expectations | (PDF) |
7 | Discrete random variables and their expectations (cont.) | (PDF) |
8 | Continuous random variables | (PDF) |
9 | Continuous random variables (cont.) | (PDF) |
10 | Derived distributions | (PDF) |
11 | Abstract integration | (PDF) |
12 | Abstract integration (cont.) | (PDF) |
13 | Product measure and Fubini's theorem | (PDF) |
14 | Moment generating functions | (PDF) |
15 | Multivariate normal distributions | (PDF) |
16 | Multivariate normal distributions: characteristic functions | (PDF) |
17 | Convergence of random variables | (PDF) |
18 | Laws of large numbers | (PDF) |
19 | Laws of large numbers (cont.) | (PDF) |
20 | The Bernoulli and Poisson processes | (PDF) |
21 | The Poisson process | (PDF) |
22 | Markov chains | (PDF) |
23 | Markov chains II: mean recurrence times | (PDF) |
24 | Markov chains III: periodicity, mixing, absorption | (PDF) |
25 | Infinite Markov chains, continuous time Markov chains | (PDF) |
26 | Birth-death processes | (PDF) |